Skip to main content

Advertisement

SpringerLink
  • Log in
Book cover

European Conference on Computer Vision

ECCV 2010: Computer Vision – ECCV 2010 pp 294–308Cite as

  1. Home
  2. Computer Vision – ECCV 2010
  3. Conference paper
A Local Bag-of-Features Model for Large-Scale Object Retrieval

A Local Bag-of-Features Model for Large-Scale Object Retrieval

  • Zhe Lin19 &
  • Jonathan Brandt19 
  • Conference paper
  • 6292 Accesses

  • 14 Citations

Part of the Lecture Notes in Computer Science book series (LNIP,volume 6316)

Abstract

The so-called bag-of-features (BoF) representation for images is by now well-established in the context of large scale image and video retrieval. The BoF framework typically ranks database image according to a metric on the global histograms of the query and database images, respectively. Ranking based on global histograms has the advantage of being scalable with respect to the number of database images, but at the cost of reduced retrieval precision when the object of interest is small. Additionally, computationally intensive post-processing (such as RANSAC) is typically required to locate the object of interest in the retrieved images. To address these shortcomings, we propose a generalization of the global BoF framework to support scalable local matching. Specifically, we propose an efficient and accurate algorithm to accomplish local histogram matching and object localization simultaneously. The generalization is to represent each database image as a family of histograms that depend functionally on a bounding rectangle. Integral with the image retrieval process, we identify bounding rectangles whose histograms optimize query relevance, and rank the images accordingly. Through this localization scheme, we impose a weak spatial consistency constraint with low computational overhead. We validate our approach on two public image retrieval benchmarks: the University of Kentucky data set and the Oxford Building data set. Experiments show that our approach significantly improves on BoF-based retrieval, without requiring computationally expensive post-processing.

Keywords

  • Image Retrieval
  • Visual Word
  • Query Image
  • Integral Image
  • Object Retrieval

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Download conference paper PDF

References

  1. Chum, O., Perdoch, M., Matas, J.: Geometric min-hashing: Finding a (thick) needle in a haystack. In: CVPR, pp. 17–24 (2009)

    Google Scholar 

  2. Jegou, H., Douze, M., Schmid, C.: Hamming embedding and weak geometric consistency for large scale image search. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 304–317. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  3. Jegou, H., Douze, M., Schmid, C.: On the burstiness of visual elements. In: CVPR, pp. 1169–1176 (2009)

    Google Scholar 

  4. Jegou, H., Douze, M., Schmid, C.: Packing bag-of-features. In: ICCV, pp. 1–8 (2009)

    Google Scholar 

  5. Ke, Y., Sukthankar, R., Huston, L.: Efficient near-duplicate detection and sub-image retrieval. In: ACM Multimedia, pp. 869–876 (2004)

    Google Scholar 

  6. Lampert, C.H.: Detecting objects in large image collections and videos by efficient subimage retrieval. In: ICCV, pp. 1–8 (2009)

    Google Scholar 

  7. Lampert, C.H., Blaschko, M.B., Hofmann, T.: Beyond sliding windows: Object localization by efficient subwindow search. In: CVPR, pp. 1–8 (2008)

    Google Scholar 

  8. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: CVPR, pp. 2169–2178 (2006)

    Google Scholar 

  9. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    CrossRef  Google Scholar 

  10. Matas, J., Chum, O., Urba, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: BMVC, pp. 384–396 (2002)

    Google Scholar 

  11. Nistér, D., Stewénius, H.: Scalable recognition with a vocabulary tree. In: CVPR, pp. 2161–2168 (2006)

    Google Scholar 

  12. Perdoch, M., Chum, O., Matas, J.: Efficient representation of local geometry for large scale object retrieval. In: CVPR, pp. 9–16 (2009)

    Google Scholar 

  13. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: CVPR, pp. 1–8 (2007)

    Google Scholar 

  14. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Lost in quantization: Improving particular object retrieval in large scale image databases. In: CVPR, pp. 1–8 (2008)

    Google Scholar 

  15. Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching in videos. In: ICCV, pp. 1470–1477 (2003)

    Google Scholar 

  16. Vedaldi, A., Gulshan, V., Varma, M., Zisserman, A.: Multiple kernels for object detection. In: ICCV, pp. 1–8 (2009)

    Google Scholar 

  17. Wu, Z., Ke, Q., Isard, M., Sun, J.: Bundling features for large scale partial-duplicate web image search. In: CVPR, pp. 25–32 (2009)

    Google Scholar 

  18. Wu, Z., Ke, Q., Sun, J., Shum, H.Y.: A multi-sample, multi-tree approach to bag-of-words image representation. In: ICCV, pp. 1–8 (2009)

    Google Scholar 

  19. Yeh, T., Lee, J.J., Darrell, T.: Fast concurrent object localization and recognition. In: CVPR, pp. 280–287 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Adobe Systems, Inc,  

    Zhe Lin & Jonathan Brandt

Authors
  1. Zhe Lin
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Jonathan Brandt
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. GRASP Laboratory, University of Pennsylvania, 3330 Walnut Street, 19104, Philadelphia, PA, USA

    Kostas Daniilidis

  2. School of Electrical and Computer Engineering, National Technical University of Athens, 15773, Athens, Greece

    Petros Maragos

  3. Department of Applied Mathematics, Ecole Centrale de Paris, Grande Voie des Vignes, 92295, Chatenay-Malabry, France

    Nikos Paragios

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lin, Z., Brandt, J. (2010). A Local Bag-of-Features Model for Large-Scale Object Retrieval. In: Daniilidis, K., Maragos, P., Paragios, N. (eds) Computer Vision – ECCV 2010. ECCV 2010. Lecture Notes in Computer Science, vol 6316. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15567-3_22

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-642-15567-3_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15566-6

  • Online ISBN: 978-3-642-15567-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 3.226.122.122

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.