ADICT: Accurate Direct and Inverse Color Transformation

  • Behzad Sajadi
  • Maxim Lazarov
  • Aditi Majumder
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6314)

Abstract

A color transfer function describes the relationship between the input and the output colors of a device. Computing this function is difficult when devices do not follow traditionally coveted properties like channel independency or color constancy, as is the case with most commodity capture and display devices (like projectors, camerass and printers). In this paper we present a novel representation for the color transfer function of any device, using higher-dimensional Bézier patches, that does not rely on any restrictive assumptions and hence can handle devices that do not behave in an ideal manner. Using this representation and a novel reparametrization technique, we design a color transformation method that is more accurate and free of local artifacts compared to existing color transformation methods. We demonstrate this method’s generality by using it for color management on a variety of input and output devices. Our method shows significant improvement in the appearance of seamlessness when used in the particularly demanding application of color matching across multi-projector displays or multi-camera systems. Finally we demonstrate that our color transformation method can be performed efficiently using a real-time GPU implementation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Valois, R.L.D., Valois, K.K.D.: Spatial Vision. Oxford University Press, Oxford (1990)Google Scholar
  2. 2.
    Berns, R., Motta, R., Gorzynski, M.: Crt colorimetry, part i and ii: Theory and practice. Color Research and Application 18, 299–325 (1992)CrossRefGoogle Scholar
  3. 3.
    Bala, R., Braun, K.: A camera-based method for calibrating projection color displays. In: 14th Color Imaging Conference (2006)Google Scholar
  4. 4.
    Bastani, B., Ghaffari, R., Funt, B.: Optimal linear rgb-to-xyz mapping for color display calibration. In: 12th Color Imaging Conference (2004)Google Scholar
  5. 5.
    Heckaman, R.L., Fairchild, M.D., Wyble, D.: The effect of dlp projector white channel on perceptual gamut. In: 13th Color Imaging Conference (2005)Google Scholar
  6. 6.
    Niven, G., Mooradian, A.: Low cost lasers and laser arrays for projection displays, pp. 1904–1907 (2006)Google Scholar
  7. 7.
    Kishimoto, J., Yamaguchi, M., Ohyama, N.: Evaluation of tone mapping for multi-band high dynamic range images. In: ACM SIGGRAPH Talks (2008)Google Scholar
  8. 8.
    Wyble, D.R., Rosen, M.R.: Color management of dlp projectors. In: 12th Color Imaging Conference (2004)Google Scholar
  9. 9.
    Wallace, G., Chen, H., Li, K.: Color gamut matching for tiled display walls. In: Immersive Projection Technology Workshop (2003)Google Scholar
  10. 10.
    Tin, S.K.: Color characterization of projectors. US Patent 7148902 (2006)Google Scholar
  11. 11.
    Balasubramanian, R., de Queiroz, R., Eschbach, R.: Gamut mapping to preserve spatial luminance variations. Journal of Image Science and Technology 45, 436–482 (2001)Google Scholar
  12. 12.
    Horiuchi, T., Tominaga, S.: Color gamut mapping algorithm for preserving spatial ratios. In: 16th Color Imaging Conference (2008)Google Scholar
  13. 13.
    Nakauchi, S., Hatanaka, S., Usui, S.: Color gamut mapping based on a perceptual image difference measure. Color Research and Application 24, 280–290 (1999)CrossRefGoogle Scholar
  14. 14.
    Kimmel, R., Shaked, D., Elad, M., Sobel, I.: Space dependent color gamut mapping: A variational approach. IEEE Transactions on image processing, 796–803 (2005)Google Scholar
  15. 15.
    McCann, J.J.: Lessons learned from mondrian applied to real images and color gamuts. In: 7th Color Imaging Conference (1999)Google Scholar
  16. 16.
    Montag, E.D., Fairchild, M.D.: Psychophysical evaluation of gamut mapping techniques using simple rendered images and artificial gamut boundaries. IEEE TIP 6, 977–989 (1997)Google Scholar
  17. 17.
    Morovic, J., Ronnier, L.M.: The fundamentals of gamut mapping: a survey. The Journal of Imaging Science and Technology 45, 283–290 (2001)Google Scholar
  18. 18.
    Majumder, A., Stevens, R.: Color nonuniformity in projection-based displays: Analysis and solutions. IEEE TVCG 10(2) (2003)Google Scholar
  19. 19.
    Sukthankar, R., Stockton, R., Mullin, M.: Smarter presentations: Exploiting homography in cameraprojector systems. In: IEEE ICCV (2001)Google Scholar
  20. 20.
    Raskar, R.: Immersive planar displays using roughly aligned projectors. In: IEEE VR (1999)Google Scholar
  21. 21.
    Majumder, A., Stevens, R.: Perceptual photometric seamlessness in tiled projection-based displays. In: ACM TOG, vol. 24 (2005)Google Scholar
  22. 22.
    Nayar, S.K., Peri, H., Grossberg, M.D., Belhumeur, P.N.: A projection system with radiometric compensation for screen imperfections. In: IEEE PROCAMS (2003)Google Scholar
  23. 23.
    Grossberg, M., Nayar, S.: Determining the camera response from images: What is knowable? In: IEEE PAMI, vol. 25, pp. 1455–1467 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Behzad Sajadi
    • 1
  • Maxim Lazarov
    • 1
  • Aditi Majumder
    • 1
  1. 1.University of CaliforniaIrvine

Personalised recommendations