BRIEF: Binary Robust Independent Elementary Features

  • Michael Calonder
  • Vincent Lepetit
  • Christoph Strecha
  • Pascal Fua
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6314)

Abstract

We propose to use binary strings as an efficient feature point descriptor, which we call BRIEF.We show that it is highly discriminative even when using relatively few bits and can be computed using simple intensity difference tests. Furthermore, the descriptor similarity can be evaluated using the Hamming distance, which is very efficient to compute, instead of the L2 norm as is usually done.

As a result, BRIEF is very fast both to build and to match. We compare it against SURF and U-SURF on standard benchmarks and show that it yields a similar or better recognition performance, while running in a fraction of the time required by either.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mikolajczyk, K., Schmid, C.: A Performance Evaluation of Local Descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 1615–1630 (2004)CrossRefGoogle Scholar
  2. 2.
    Hua, G., Brown, M., Winder, S.: Discriminant Embedding for Local Image Descriptors. In: International Conference on Computer Vision (2007)Google Scholar
  3. 3.
    Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints. Computer Vision and Image Understanding 20, 91–110 (2004)Google Scholar
  4. 4.
    Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Surf: Speeded Up Robust Features. Computer Vision and Image Understanding 10, 346–359 (2008)CrossRefGoogle Scholar
  5. 5.
    Tuytelaars, T., Schmid, C.: Vector Quantizing Feature Space With a Regular Lattice. In: International Conference on Computer Vision (2007)Google Scholar
  6. 6.
    Winder, S., Hua, G., Brown, M.: Picking the Best Daisy. In: Conference on Computer Vision and Pattern Recognition (2009)Google Scholar
  7. 7.
    Calonder, M., Lepetit, V., Konolige, K., Bowman, J., Mihelich, P., Fua, P.: Compact Signatures for High-Speed Interest Point Description and Matching. In: International Conference on Computer Vision (2009)Google Scholar
  8. 8.
    Shakhnarovich, G.: Learning Task-Specific Similarity. PhD thesis, Massachusetts Institute of Technology (2005)Google Scholar
  9. 9.
    Ozuysal, M., Calonder, M., Lepetit, V., Fua, P.: Fast Keypoint Recognition Using Random Ferns. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 448–461 (2010)CrossRefGoogle Scholar
  10. 10.
    Intel: SSE4 Programming Reference: software.intel.com/file/18187 (2007)Google Scholar
  11. 11.
    Gionis, A., Indik, P., Motwani, R.: Similarity Search in High Dimensions Via Hashing. In: International Conference on Very Large Databases (2004)Google Scholar
  12. 12.
    Torralba, A., Fergus, R., Weiss, Y.: Small Codes and Large Databases for Recognition. In: Conference on Computer Vision and Pattern Recognition (2008)Google Scholar
  13. 13.
    Salakhutdinov, R., Hinton, G.: Learning a Nonlinear Embedding by Preserving Class Neighbourhood Structure. In: International Conference on Artificial Intelligence and Statistics (2007)Google Scholar
  14. 14.
    Taylor, S., Rosten, E., Drummond, T.: Robust feature matching in 2.3s. In: IEEE CVPR Workshop on Feature Detectors and Descriptors: The State of the Art and Beyond (2009)Google Scholar
  15. 15.
    Lepetit, V., Fua, P.: Keypoint Recognition Using Randomized Trees. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 1465–1479 (2006)CrossRefGoogle Scholar
  16. 16.
    Agrawal, M., Konolige, K., Blas, M.: Censure: Center Surround Extremas for Realtime Feature Detection and Matching. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 102–115. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Rosten, E., Drummond, T.: Machine Learning for High-Speed Corner Detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Shakhnarovich, G., Viola, P., Darrell, T.: Fast Pose Estimation With Parameter-Sensitive Hashing. In: International Conference on Computer Vision (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Michael Calonder
    • 1
  • Vincent Lepetit
    • 1
  • Christoph Strecha
    • 1
  • Pascal Fua
    • 1
  1. 1.EPFLLausanneSwitzerland

Personalised recommendations