Building Rome on a Cloudless Day

  • Jan-Michael Frahm
  • Pierre Fite-Georgel
  • David Gallup
  • Tim Johnson
  • Rahul Raguram
  • Changchang Wu
  • Yi-Hung Jen
  • Enrique Dunn
  • Brian Clipp
  • Svetlana Lazebnik
  • Marc Pollefeys
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6314)

Abstract

This paper introduces an approach for dense 3D reconstruction from unregistered Internet-scale photo collections with about 3 million images within the span of a day on a single PC (“cloudless”). Our method advances image clustering, stereo, stereo fusion and structure from motion to achieve high computational performance. We leverage geometric and appearance constraints to obtain a highly parallel implementation on modern graphics processors and multi-core architectures. This leads to two orders of magnitude higher performance on an order of magnitude larger dataset than competing state-of-the-art approaches.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

978-3-642-15561-1_27_MOESM1_ESM.mov (13.8 mb)
Electronic Supplementary Material (14,147 KB)

References

  1. 1.
    Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: Exploring photo collections in 3d. In: SIGGRAPH, pp. 835–846 (2006)Google Scholar
  2. 2.
    Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building Rome in a day. In: ICCV (2009)Google Scholar
  3. 3.
    Li, X., Wu, C., Zach, C., Lazebnik, S., Frahm, J.M.: Modeling and recognition of landmark image collections using iconic scene graphs. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 427–440. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Goesele, M., Snavely, N., Curless, B., Hoppe, H., Seitz, S.M.: Multi-view stereo for community photo collections. In: ICCV (2007)Google Scholar
  5. 5.
    Furukawa, Y., Curless, B., Seitz, S.M., Szeliski, R.: Towards internet-scale multiview stereo. In: Proceedings of IEEE CVPR (2010)Google Scholar
  6. 6.
    Pollefeys, M., Nister, D., Frahm, J.M., Akbarzadeh, A., Mordohai, P., Clipp, B., Engels, C., Gallup, D., Kim, S.J., Merrell, P., Salmi, C., Sinha, S., Talton, B., Wang, L., Yang, Q., Stewenius, H., Yang, R., Welch, G., Towles, H.: Detailed real-time urban 3d reconstruction from video. IJCV Special Issue on Modeling Large-Scale 3D Scenes (2008)Google Scholar
  7. 7.
    Yang, R., Pollefeys, M.: Multi-resolution real-time stereo on commodity graphics hardware. In: CVPR, pp. 211–217 (2003)Google Scholar
  8. 8.
    Gallup, D., Pollefeys, M., Frahm, J.M.: 3d reconstruction using an n-layer heightmap. In: DAGM (2010)Google Scholar
  9. 9.
    Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. IJCV 42, 145–175 (2001)MATHCrossRefGoogle Scholar
  10. 10.
    Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. Communications of the ACM 51, 117–122 (2008)CrossRefGoogle Scholar
  11. 11.
    Raginsky, M., Lazebnik, S.: Locality sensitive binary codes from shift-invariant kernels. In: NIPS (2009)Google Scholar
  12. 12.
    Torralba, A., Fergus, R., Weiss, Y.: Small codes and large databases for recognition. In: CVPR (2008)Google Scholar
  13. 13.
    Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, Chichester (1990)Google Scholar
  14. 14.
    Raguram, R., Frahm, J.M., Pollefeys, M.: A comparative analysis of RANSAC techniques leading to adaptive real-time random sample consensus. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 500–513. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: CVPR (2006)Google Scholar
  16. 16.
    Snavely, N., Seitz, S.M., Szeliski, R.: Skeletal sets for efficient structure from motion. In: CVPR (2008)Google Scholar
  17. 17.
    Gallup, D., Frahm, J.M., Pollefeys, M.: A heightmap model for efficient 3d reconstruction from street-level video. In: 3DPVT (2010)Google Scholar
  18. 18.
    Cornelis, N., Cornelis, K., Van Gool, L.: Fast compact city modeling for navigation pre-visualization. In: CVPR (2006)Google Scholar
  19. 19.
    Schaffalitzky, F., Zisserman, A.: Multi-view matching for unordered image sets, or how do I organize my holiday snaps? In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 414–431. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from Internet photo collections. IJCV 80, 189–210 (2008)CrossRefGoogle Scholar
  21. 21.
    Chum, O., Philbin, J., Sivic, J., Isard, M., Zisserman, A.: Total recall: Automatic query expansion with a generative feature model for object retrieval. In: ICCV (2007)Google Scholar
  22. 22.
    Simon, I., Snavely, N., Seitz, S.M.: Scene summarization for online image collections. In: ICCV (2007)Google Scholar
  23. 23.
    Strecha, C., Pylvanainen, T., Fua, P.: Dynamic and scalable large scale image reconstruction. In: CVPR (2010)Google Scholar
  24. 24.
    Chum, O., Matas, J.: Web scale image clustering: Large scale discovery of spatially related images. Technical Report, CTU-CMP-2008-15 (2008)Google Scholar
  25. 25.
    Philbin, J., Zisserman, A.: Object mining using a matching graph on very large image collections. In: Proceedings of the Indian Conference on Computer Vision, Graphics and Image Processing (2008)Google Scholar
  26. 26.
    Ni, K., Steedly, D., Dellaert, F.: Out-of-core bundle adjustment for large-scale 3d reconstruction. In: ICCV (2007)Google Scholar
  27. 27.
    Furukawa, Y., Ponce, J.: Accurate, dense, and robust multi-view stereopsis. Trans. PAMI (2009)Google Scholar
  28. 28.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. IJCV 60, 91–110 (2004)CrossRefGoogle Scholar
  29. 29.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)MATHGoogle Scholar
  30. 30.
    Beder, C., Steffen, R.: Determining an initial image pair for fixing the scale of a 3D reconstruction from an image sequence. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) DAGM 2006. LNCS, vol. 4174, pp. 657–666. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  31. 31.
    Nistér, D.: An efficient solution to the five-point relative pose problem. Trans. PAMI 26, 756–770 (2004)Google Scholar
  32. 32.
    Lourakis, M., Argyros, A.: The design and implementation of a generic sparse bundle adjustment software package based on the Levenberg-Marquardt algorithm. Technical Report 340, Institute of Computer Science - FORTH (2004)Google Scholar
  33. 33.
    Kim, S., Gallup, D., Frahm, J., Akbarzadeh, A., Yang, Q., Yang, R., Nister, D., Pollefeys, M.: Gain adaptive real-time stereo streaming. In: International Conference on Computer Vision Systems, ICVS (2007)Google Scholar
  34. 34.
    Kang, S., Szeliski, R., Chai, J.: Handling occlusions in dense multi-view stereo. In: CVPR (2001)Google Scholar
  35. 35.
    Szeliski, R.: Image alignment and stitching: A tutorial. Microsoft Research Technical Report (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jan-Michael Frahm
    • 1
  • Pierre Fite-Georgel
    • 1
  • David Gallup
    • 1
  • Tim Johnson
    • 1
  • Rahul Raguram
    • 1
  • Changchang Wu
    • 1
  • Yi-Hung Jen
    • 1
  • Enrique Dunn
    • 1
  • Brian Clipp
    • 1
  • Svetlana Lazebnik
    • 1
  • Marc Pollefeys
    • 1
    • 2
  1. 1.Department of Computer ScienceUniversity of North Carolina at Chapel Hill 
  2. 2.Department of Computer ScienceETH Zürich 

Personalised recommendations