Blind Reflectometry

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6311)


We address the problem of inferring homogeneous reflectance (BRDF) from a single image of a known shape in an unknown real-world lighting environment. With appropriate representations of lighting and reflectance, the image provides bilinear constraints on the two signals, and our task is to blindly isolate the latter. We achieve this by leveraging the statistics of real-world illumination and estimating the reflectance that is most likely under a distribution of probable illumination environments. Experimental results with a variety of real and synthetic images suggest that useable reflectance information can be inferred in many cases, and that these estimates are stable under changes in lighting.


Ground Truth Independent Component Analysis Color Constancy High Dynamic Range Image Eurographics Symposium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Beck, J., Prazdny, S.: Highlights and the perception of glossiness. Perception & Psychophysics 30(4) (1981)Google Scholar
  2. 2.
    Brainard, D., Freeman, W.: Bayesian color constancy. J. Opt. Soc. Am. A 14(7) (1997)Google Scholar
  3. 3.
    Ding, C., Li, T., Jordan, M.: Convex and semi-nonnegative matrix factorizations. IEEE T. Pattern Anal. 32(1) (2010)Google Scholar
  4. 4.
    Dror, R.: Surface reflectance recognition and real-world illumination statistics. Ph.D. thesis, Massachusetts Institute of Technology (2002)Google Scholar
  5. 5.
    Dror, R., Willsky, A., Adelson, E.: Statistical characterization of real-world illumination. J. Vision 4 (2004)Google Scholar
  6. 6.
    Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. ACM T. Graphics (Proc. ACM SIGGRAPH) 25(3) (2006)Google Scholar
  7. 7.
    Fleming, R., Dror, R.O., Adelson, E.H.: Real-world illumination and the perception of surface reflectance properties. J. Vision 3(5) (2003)Google Scholar
  8. 8.
    Georghiades, A.: Recovering 3-D shape and reflectance from a small number of photographs. In: Proc. Eurographics Workshop on Rendering (2003)Google Scholar
  9. 9.
    Ghosh, A., Achutha, S., Heidrich, W., O’Toole, M.: BRDF acquisition with basis illumination. In: Proc. IEEE Int. Conf. Computer Vision (2007)Google Scholar
  10. 10.
    Haber, T., Fuchs, C., Bekaer, P., Seidel, H., Goesele, M., Lensch, H.: Relighting objects from image collections. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition (2009)Google Scholar
  11. 11.
    Hara, K., Nishino, K., Ikeuchi, K.: Mixture of spherical distributions for single-view relighting. IEEE T. Pattern Anal. 30(1) (2008)Google Scholar
  12. 12.
    Levin, A., Weiss, Y., Durand, F., Freeman, W.: Understanding and evaluating blind deconvolution algorithms. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition (2009)Google Scholar
  13. 13.
    Mahajan, D., Ramamoorthi, R., Curless, B.: A theory of spherical harmonic identities for BRDF/lighting transfer and image consistency. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 41–55. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Marschner, S., Westin, S., Lafortune, E., Torrance, K., Greenberg, D.: Image-based BRDF measurement including human skin. In: Proc. Eurographics Symposium on Rendering (1999)Google Scholar
  15. 15.
    Matusik, W., Pfister, H., Brand, M., McMillan, L.: A data-driven reflectance model. ACM T. Graphics (Proc. ACM SIGGRAPH) 22(3) (2003)Google Scholar
  16. 16.
    Miskin, J.: Ensemble Learning for Independent Component Analysis. Ph.D. thesis, University of Cambridge (2000)Google Scholar
  17. 17.
    Miskin, J., MacKay, D.: Ensemble learning for blind source separation. Independent Component Analysis: Principles and Practice (2001)Google Scholar
  18. 18.
    Ng, R., Ramamoorthi, R., Hanrahan, P.: Triple product wavelet integrals for all-frequency relighting. ACM T. Graphics (Proc. ACM SIGGRAPH) 23(3) (2004)Google Scholar
  19. 19.
    Ngan, A., Durand, F., Matusik, W.: Experimental analysis of BRDF models. In: Eurographics Symposium on Rendering (2005)Google Scholar
  20. 20.
    Nishino, K.: Directional statistics BRDF model. In: Proc. IEEE Int. Conf. Computer Vision (2009)Google Scholar
  21. 21.
    Nishino, K., Zhang, Z., Ikeuchi, K.: Determining reflectance parameters and illumination distribution from a sparse set of images for view-dependent image synthesis. In: Proc. IEEE Int. Conf. Computer Vision (2001)Google Scholar
  22. 22.
    Pellacini, F., Ferwerda, J., Greenberg, D.: Toward a psychophysically-based light reflection model for image synthesis. In: Proc. ACM SIGGRAPH (2000)Google Scholar
  23. 23.
    Praun, E., Hoppe, H.: Spherical parametrization and remeshing. ACM T. Graphics 22(3) (2003)Google Scholar
  24. 24.
    Ramamoorthi, R., Hanrahan, P.: A signal-processing framework for inverse rendering. In: Proceedings of ACM SIGGRAPH, pp. 117–128 (2001)Google Scholar
  25. 25.
    Ramamoorthi, R., Hanrahan, P.: Frequency space environment map rendering. ACM Transactions on Graphics (TOG) 21(3), 517–526 (2002)CrossRefGoogle Scholar
  26. 26.
    Ramamoorthi, R., Hanrahan, P.: A signal-processing framework for reflection. ACM T. Graphics 23(4) (2004)Google Scholar
  27. 27.
    Romeiro, F., Vasilyev, Y., Zickler, T.: Passive reflectometry. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 859–872. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Romeiro, F., Zickler, T.: Ensemble learning for reflectometry. Tech. Rep. TR-06-10, Harvard School of Engineering and Applied Sciences (2010),
  29. 29.
    Rusinkiewicz, S.: A new change of variables for efficient BRDF representation. In: Eurographics Rendering Workshop ’98 (1998)Google Scholar
  30. 30.
    Sato, Y., Wheeler, M., Ikeuchi, K.: Object shape and reflectance modeling from observation. In: Proceedings of ACM SIGGRAPH (1997)Google Scholar
  31. 31.
    Sharan, L., Li, Y., Motoyoshi, I., Nishida, S., Adelson, E.: Image statistics for surface reflectance perception. J. Opt. Soc. Am. A 25(4) (2008)Google Scholar
  32. 32.
    Stark, M., Arvo, J., Smits, B.: Barycentric parameterizations for isotropic BRDFs. IEEE T. Vis. Computer Graphics 11(2) (2005)Google Scholar
  33. 33.
    Todd, J., Farley norman, J., Mingolla, E.: Lightness constancy in the presence of specular highlights. Psychological Science 15(1), 33–39 (2004)CrossRefGoogle Scholar
  34. 34.
    Wang, R., Ng, R., Luebke, D., Humphreys, G.: Efficient wavelet rotation for environment map rendering. In: Eurographics Symposium on Rendering (2006)Google Scholar
  35. 35.
    Wills, J., Agarwal, S., Kriegman, D., Belongie, S.: Toward a perceptual space for gloss. ACM T. Graphics 28(4) (2009)Google Scholar
  36. 36.
    Yu, T., Wang, H., Ahuja, N., Chen, W.: Sparse lumigraph relighting by illumination and reflectance estimation from multi-view images. In: Eurographics Symposium on Rendering (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Harvard UniversityCambridgeUSA

Personalised recommendations