Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
Book cover

European Conference on Computer Vision

ECCV 2010: Computer Vision – ECCV 2010 pp 620–633Cite as

  1. Home
  2. Computer Vision – ECCV 2010
  3. Conference paper
Backprojection Revisited: Scalable Multi-view Object Detection and Similarity Metrics for Detections

Backprojection Revisited: Scalable Multi-view Object Detection and Similarity Metrics for Detections

  • Nima Razavi19,
  • Juergen Gall19 &
  • Luc Van Gool19,20 
  • Conference paper
  • 8685 Accesses

  • 12 Citations

Part of the Lecture Notes in Computer Science book series (LNIP,volume 6311)

Abstract

Hough transform based object detectors learn a mapping from the image domain to a Hough voting space. Within this space, object hypotheses are formed by local maxima. The votes contributing to a hypothesis are called support. In this work, we investigate the use of the support and its backprojection to the image domain for multi-view object detection. To this end, we create a shared codebook with training and matching complexities independent of the number of quantized views. We show that since backprojection encodes enough information about the viewpoint all views can be handled together. In our experiments, we demonstrate that superior accuracy and efficiency can be achieved in comparison to the popular one-vs-the-rest detectors by treating views jointly especially with few training examples and no view annotations. Furthermore, we go beyond the detection case and based on the support we introduce a part-based similarity measure between two arbitrary detections which naturally takes spatial relationships of parts into account and is insensitive to partial occlusions. We also show that backprojection can be used to efficiently measure the similarity of a detection to all training examples. Finally, we demonstrate how these metrics can be used to estimate continuous object parameters like human pose and object’s viewpoint. In our experiment, we achieve state-of-the-art performance for view-classification on the PASCAL VOC’06 dataset.

Keywords

  • Training Image
  • Object Detection
  • Image Domain
  • Object Hypothesis
  • Vote Space

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Chapter PDF

Download to read the full chapter text

References

  1. Agarwal, S., Awan, A., Roth, D.: Learning to detect objects in images via a sparse, part-based representation. TPAMI 26, 1475–1490 (2004)

    Google Scholar 

  2. Ballard, D.H.: Generalizing the hough transform to detect arbitrary shapes. Pattern Recognition 13, 111–122 (1981)

    CrossRef  MATH  Google Scholar 

  3. Leibe, B., Leonardis, A., Schiele, B.: Robust object detection with interleaved categorization and segmentation. IJCV 77, 259–289 (2008)

    CrossRef  Google Scholar 

  4. Thomas, A., Ferrari, V., Leibe, B., Tuytelaars, T., Van Gool, L.: Using multi-view recognition and meta-data annotation to guide a robot’s attention. Int. J. Rob. Res. 28, 976–998 (2009)

    CrossRef  Google Scholar 

  5. Thomas, A., Ferrari, V., Leibe, B., Tuytelaars, T., Schiele, B., Gool, L.V.: Towards multi-view object class detection. In: CVPR (2006)

    Google Scholar 

  6. Leibe, B., Cornelis, N., Cornelis, K., Gool, L.V.: Dynamic 3d scene analysis from a moving vehicle. In: CVPR (2007)

    Google Scholar 

  7. Opelt, A., Pinz, A., Zisserman, A.: Learning an alphabet of shape and appearance for multi-class object detection. IJCV (2008)

    Google Scholar 

  8. Shotton, J., Blake, A., Cipolla, R.: Multiscale categorical object recognition using contour fragments. TPAMI 30, 1270–1281 (2008)

    Google Scholar 

  9. Boiman, O., Shechtman, E., Irani, M.: In defense of nearest-neighbor based image classification. In: CVPR (2008)

    Google Scholar 

  10. Gall, J., Lempitsky, V.: Class-specific hough forests for object detection. In: CVPR (2009)

    Google Scholar 

  11. Maji, S., Malik, J.: Object detection using a max-margin hough transform. In: CVPR (2009)

    Google Scholar 

  12. Ommer, B., Malik, J.: Multi-scale object detection by clustering lines. In: ICCV (2009)

    Google Scholar 

  13. Selinger, A., Nelson, R.C.: Appearance-based object recognition using multiple views. In: CVPR (2001)

    Google Scholar 

  14. Seemann, E., Leibe, B., Schiele, B.: Multi-aspect detection of articulated objects. In: CVPR (2006)

    Google Scholar 

  15. Kushal, A., Schmid, C., Ponce, J.: Flexible object models for category-level 3d object recognition. In: CVPR (2007)

    Google Scholar 

  16. Su, H., Sun, M., Fei-Fei, L., Savarese, S.: Learning a dense multi-view representation for detection, viewpoint classification and synthesis of object categories. In: ICCV (2009)

    Google Scholar 

  17. Savarese, S., Fei-Fei, L.: 3D generic object categorization, localization and pose estimation. In: ICCV (2007)

    Google Scholar 

  18. Sun, M., Su, H., Savarese, S., Fei-Fei, L.: A multi-view probabilistic model for 3d object classes. In: CVPR (2009)

    Google Scholar 

  19. Chiu, H.P., Kaelbling, L., Lozano-Perez, T.: Virtual training for multi-view object class recognition. In: CVPR (2007)

    Google Scholar 

  20. Farhadi, A., Tabrizi, M., Endres, I., Forsyth, D.: A latent model of discriminative aspect. In: ICCV (2009)

    Google Scholar 

  21. Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)

    CrossRef  MATH  Google Scholar 

  22. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The 2006 pascal visual object classes challenge (2006)

    Google Scholar 

  23. Blaschko, M.B., Lampert, C.H.: Learning to localize objects with structured output regression. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 2–15. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  24. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: CVPR (2006)

    Google Scholar 

  25. Andriluka, M., Roth, S., Schiele, B.: People-tracking-by-detection and people-detection-by-tracking. In: CVPR (2008)

    Google Scholar 

  26. Torralba, A., Murphy, K.P., Freeman, W.T.: Sharing visual features for multiclass and multiview object detection. TPAMI 29, 854–869 (2007)

    Google Scholar 

  27. Everingham, M., et al.: The 2005 pascal visual object classes challenge (2005)

    Google Scholar 

  28. Winn, J.M., Shotton, J.: The layout consistent random field for recognizing and segmenting partially occluded objects. In: CVPR, vol. (1), pp. 37–44 (2006)

    Google Scholar 

  29. Zhang, H., Berg, A.C., Maire, M., Malik, J.: Svm-knn: Discriminative nearest neighbor classification for visual category recognition. In: CVPR (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Computer Vision Laboratory, ETH Zurich,  

    Nima Razavi, Juergen Gall & Luc Van Gool

  2. ESAT-PSI/IBBT, KU Leuven,  

    Luc Van Gool

Authors
  1. Nima Razavi
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Juergen Gall
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Luc Van Gool
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. GRASP Laboratory, University of Pennsylvania, 3330 Walnut Street, 19104, Philadelphia, PA, USA

    Kostas Daniilidis

  2. School of Electrical and Computer Engineering, National Technical University of Athens, 15773, Athens, Greece

    Petros Maragos

  3. Department of Applied Mathematics, Ecole Centrale de Paris, Grande Voie des Vignes, 92295, Chatenay-Malabry, France

    Nikos Paragios

1 Electronic Supplementary Material

Electronic Supplementary Material (15,253 KB)

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Razavi, N., Gall, J., Van Gool, L. (2010). Backprojection Revisited: Scalable Multi-view Object Detection and Similarity Metrics for Detections . In: Daniilidis, K., Maragos, P., Paragios, N. (eds) Computer Vision – ECCV 2010. ECCV 2010. Lecture Notes in Computer Science, vol 6311. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15549-9_45

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-642-15549-9_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15548-2

  • Online ISBN: 978-3-642-15549-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

44.197.101.251

Not affiliated

Springer Nature

© 2023 Springer Nature