Chrono-Gait Image: A Novel Temporal Template for Gait Recognition

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6311)


In this paper, we propose a novel temporal template, called Chrono-Gait Image (CGI), to describe the spatio-temporal walking pattern for human identification by gait. The CGI temporal template encodes the temporal information among gait frames via color mapping to improve the recognition performance. Our method starts with the extraction of the contour in each gait image, followed by utilizing a color mapping function to encode each of gait contour images in the same gait sequence and compositing them to a single CGI. We also obtain the CGI-based real templates by generating CGI for each period of one gait sequence and utilize contour distortion to generate the CGI-based synthetic templates. In addition to independent recognition using either of individual templates, we combine the real and synthetic temporal templates for refining the performance of human recognition. Extensive experiments on the USF HumanID database indicate that compared with the recently published gait recognition approaches, our CGI-based approach attains better performance in gait recognition with considerable robustness to gait period detection.


Foreground Pixel Individual Recognition Baseline Algorithm Gait Recognition Period Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Han, J., Bhanu, B.: Individual Recognition using Gait Energy Image. TPAMI 28, 316–322 (2006)Google Scholar
  2. 2.
    Yam, C.Y., Nixon, M.S.: Model-based Gait Recognition. In: Encyclopedia of Biometrics, pp. 633–639. Springer, Heidelberg (2009)Google Scholar
  3. 3.
    Wang, L., Tan, T.N., Hu, W.M., Ning, H.Z.: Automatic Gait Recognition Based on Statistical Shape Analysis. TIP 12, 1120–1131 (2003)MathSciNetGoogle Scholar
  4. 4.
    Veres, G.V., Gordon, L., Carter, J.N., Nixon, M.S.: What Image Information is Important in Silhouette-based Gait Recognition? In: CVPR, vol. 2, pp. 776–782 (2004)Google Scholar
  5. 5.
    Guo, B., Nixon, M.S.: Gait Feature Subset Selection by Mutual Information. TSMC, Part A 39, 36–46 (2009)Google Scholar
  6. 6.
    Bouchrika, I., Nixon, M.S.: Model-based Feature Extraction for Gait Analysis and Recognition. In: Gagalowicz, A., Philips, W. (eds.) MIRAGE 2007. LNCS, vol. 4418, pp. 150–160. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Wang, L., Tan, T., Ning, H., Hu, W.: Fusion of Static and Dynamic Body Biometrics for Gait Recognition. TCSVT 14, 149–158 (2004)Google Scholar
  8. 8.
    Wang, L., Tan, T.N., Ning, H.Z., Hu, W.M.: Silhouette Analysis Based Gait Recognition for Human Identification. TPAMI 12, 1505–1518 (2003)MathSciNetGoogle Scholar
  9. 9.
    Sundaresan, A., Roy-Chowdhury, A., Chellappa, R.: A Hidden Markov Model Based Framework for Recognition of Humans from Gait Sequences. In: ICIP, vol. 2, pp. 93–96 (2003)Google Scholar
  10. 10.
    Kobayashi, T., Otsu, N.: Action and Simultaneous Multiple-person Identification using Cubic Higher-order Local Auto-correlation. In: ICPR, vol. 4, pp. 741–744 (2004)Google Scholar
  11. 11.
    Sarkar, S., Phillips, P.J., Liu, Z., Vega, I.R., Grother, P., Bowyer, K.W.: The Humanid Gait Challenge Problem: Data Sets, Performance, and Analysis. TPAMI 27, 162–177 (2005)Google Scholar
  12. 12.
    Liu, Z., Sarkar, S.: Simplest Representation Yet for Gait Recognition: Averaged Silhouette. In: ICPR, vol. 4, pp. 211–214 (2004)Google Scholar
  13. 13.
    Xu, D., Yan, S., Tao, D., Zhang, L., Li, X., Zhang, H.J.: Human Gait Recognition With Matrix Representation. TCSVT 16, 896–903 (2006)Google Scholar
  14. 14.
    Tao, D., Li, X., Wu, X., Maybank, S.J.: General Tensor Discriminant Analysis and Gabor Features for Gait Recognition. TPAMI 29, 1700–1715 (2007)Google Scholar
  15. 15.
    Chen, C., Zhang, J., Fleischer, R.: Multilinear tensor-based non-parametric dimension reduction for gait recognition. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 1030–1039. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Bashir, K., Xiang, T., Gong, S.: Gait recognition using gait entropy image. IET Seminar Digests 2009 (2009)Google Scholar
  17. 17.
    Woodring, J., Shen, H.W.: Chronovolumes: A Direct Rendering Technique for Visualizing Time-varying Data. In: Eurographics, pp. 27–34 (2003)Google Scholar
  18. 18.
    Jänicke, H., Wiebel, A., Scheuermann, G., Kollmann, W.: Multifield Visualization using Local Statistical Complexity. TVCG 13, 1384–1391 (2007)Google Scholar
  19. 19.
    Wang, C., Yu, H., Ma, K.L.: Importance-driven Time-varying Data Visualization. TVCG 4, 1547–1554 (2008)Google Scholar
  20. 20.
    Yan, C., Sang, N., Zhang, T.: Local entropy-based transition region extraction and thresholding. Pattern Recognition Letters 24, 2935–2941 (2003)CrossRefGoogle Scholar
  21. 21.
    Kale, A., Sundaresan, A., Rajagopalan, A.N., Cuntoor, N.P., RoyChowdhury, A.K., Kruger, V., Chellappa, R.: Identification of Humans using Gait. TIP 13, 1163–1173 (2004)Google Scholar
  22. 22.
    Chen, C., Zhang, J., Fleischer, R.: Distance Approximating Dimension Reduction of Riemannian Manifolds. TSMCB 40, 208–217 (2010)Google Scholar
  23. 23.
    Moeslund, T.B., Hilton, A., Krüger, V.: A Survey of Advances in Vision-based Human Motion Capture and Analysis. CVIU 103, 90–126 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Shanghai Key Lab of Intelligent Information Processing School of Computer ScienceFudan UniversityChina
  2. 2.Key Laboratory of Machine Perception (Ministry of Education) School of Electronics Engineering and Computer SciencePeking UniversityBeijingChina
  3. 3.Department of Computer ScienceUniversity of BathUnited Kingdom
  4. 4.National Laboratory of Pattern Recognition, Institute of AutomationChinese Academy of SciencesChina

Personalised recommendations