Skip to main content

Secure Multiparty Linear Programming Using Fixed-Point Arithmetic

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNSC,volume 6345)

Abstract

Collaborative optimization problems can often be modeled as a linear program whose objective function and constraints combine data from several parties. However, important applications of this model (e.g., supply chain planning) involve private data that the parties cannot reveal to each other. Traditional linear programming methods cannot be used in this case. The problem can be solved using cryptographic protocols that compute with private data and preserve data privacy. We present a practical solution using multiparty computation based on secret sharing. The linear programming protocols use a variant of the simplex algorithm and secure computation with fixed-point rational numbers, optimized for this type of application. We present the main protocols as well as performance measurements for an implementation of our solution.

Keywords

  • Secure multiparty computation
  • linear programming
  • secure fixed-point arithmetic
  • secret sharing

References

  1. Bednarz, A., Bean, N., Roughan, M.: Hiccups on the road to privacy-preserving linear programming. In: WPES 2009: Proc. of the 8th ACM Workshop on Privacy in the electronic society, pp. 117–120. ACM, New York (2009)

    CrossRef  Google Scholar 

  2. Bertsimas, D., Tsitsiklis, J.: Introduction to Linear Optimization. Athena Scientific, Belmont (1997)

    Google Scholar 

  3. Canetti, R.: Security and composition of multiparty cryptographic protocols. Journal of Cryptology 13(1), 143–202 (2000)

    MATH  CrossRef  MathSciNet  Google Scholar 

  4. Catrina, O., Saxena, A.: Secure computation with fixed-point numbers. In: Financial Cryptography and Data Security. LNCS, Springer, Heidelberg (2010)

    Google Scholar 

  5. Cramer, R., Damgård, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 342–362. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  6. Cramer, R., Damgård, I., Maurer, U.: General Secure Multi-Party Computation from any Linear Secret-Sharing Scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  7. Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  8. Damgård, I., Thorbek, R.: Non-interactive Proofs for Integer Multiplication. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 412–429. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  9. Damgard, I., Thorbek, R.: Efficient conversion of secret-shared values between different fields. Cryptology ePrint Archive, Report 2008/221 (2008)

    Google Scholar 

  10. Ercegovac, M.D., Lang, T.: Digital Arithmetic. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  11. Frati, F., Damiani, E., Ceravolo, P., Cimato, S., Fugazza, C., Gianini, G., Marrara, S., Scotti, O.: Hazards in full-disclosure supply chains. In: Proc. 8th Conference on Advanced Information Technologies for Management, AITM 2008 (2008)

    Google Scholar 

  12. Gennaro, R., Rabin, M., Rabin, T.: Simplified VSS and fast-track multi-party computations with applications to threshold cryptography. In: Proc. of ACM Symposium on Principles of Distributed Computing, PODC 1998 (1998)

    Google Scholar 

  13. Li, J., Atallah, M.: Secure and Private Collaborative Linear Programming. In: Proc. 2nd Int. Conference on Collaborative Computing: Networking, Applications and Worksharing (ColaborateCom 2006), Atlanta, USA, pp. 19–26 (2006)

    Google Scholar 

  14. Nishide, T., Ohta, K.: Multiparty Computation for Interval, Equality, and Comparison Without Bit-Decomposition Protocol. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  15. Rosenberg, G.: Enumeration of All Extreme Equilibria of Bimatrix Games with Integer Pivoting and Improved Degeneracy Check. Research Report LSE-CDAM-2005-18, London School of Economics and Political Science (2005)

    Google Scholar 

  16. SecureSCM. Security Analysis. Deliverable D9.2, EU FP7 Project Secure Supply Chain Management, SecureSCM (2009)

    Google Scholar 

  17. SecureSCM. Protocol Description V2. Deliverable D3.2, EU FP7 Project Secure Supply Chain Management, SecureSCM (2010)

    Google Scholar 

  18. Toft, T.: Primitives and Applications for Multi-party Computation. PhD dissertation, Univ. of Aarhus, Denmark, BRICS, Dep. of Computer Science (2007)

    Google Scholar 

  19. Toft, T.: Solving Linear Programs Using Multiparty Computation. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 90–107. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Catrina, O., de Hoogh, S. (2010). Secure Multiparty Linear Programming Using Fixed-Point Arithmetic. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds) Computer Security – ESORICS 2010. ESORICS 2010. Lecture Notes in Computer Science, vol 6345. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15497-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15497-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15496-6

  • Online ISBN: 978-3-642-15497-3

  • eBook Packages: Computer ScienceComputer Science (R0)