Skip to main content

Learning Regular Expressions from Representative Examples and Membership Queries

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 6339)

Abstract

A learning algorithm is developed for a class of regular expressions equivalent to the class of all unionless unambiguous regular expressions of loop depth 2. The learner uses one representative example of the target language (where every occurrence of every loop in the target expression is unfolded at least twice) and a number of membership queries. The algorithm works in time polynomial in the length of the input example.

Keywords

  • Learning Model
  • Regular Expression
  • Target Language
  • Regular Language
  • Recursive Call

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-15488-1_9
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   74.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-15488-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angluin, D.: Learning Regular Sets from Queries and Counterexamples. Information and Computation 75, 87–106 (1987)

    CrossRef  MATH  MathSciNet  Google Scholar 

  2. Angluin, D.: Queries and Concept Learning. Machine Learning 2, 319–342 (1988)

    Google Scholar 

  3. Book, R., Even, S., Greibach, S., Ott, G.: Ambiguity in Graphs and Expressions. IEEE Transactions on Computers. C-20(2), 149–153 (1971)

    Google Scholar 

  4. Brāzma, A.: Efficient Identification of Regular Expressions from Representative Examples. In: 6th Annual ACM Conference on Comp. Learning Theory, pp. 236–242. ACM Press, New York (1993)

    Google Scholar 

  5. Bex, G.J., Neven, F., Schwentick, T., Tuyls, K.: Inference of Concise DTDs from XML Data. In: Proceedings of the 32nd International Conference on VLDB, pp. 115–126. ACM Press, New York (2006)

    Google Scholar 

  6. Brüggemann-Klein, A., Wood, D.: One-Unambiguous Regular Languages. Information and Computation 142(2), 182–206 (1998)

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. Fernau, H.: Algorithms for Learning Regular Expressions from Positive Data. Information and Computation 207(4), 521–541 (2009)

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. Gold, E.M.: Language Identification in the Limit. Information and Control 10, 447–474 (1967)

    CrossRef  MATH  Google Scholar 

  9. Kinber, E.: On Learning Regular Expressions and Patterns. In: Clark, A., Coste, F., Miclet, L. (eds.) ICGI 2008. LNCS (LNAI), vol. 5278, pp. 125–138. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kinber, E. (2010). Learning Regular Expressions from Representative Examples and Membership Queries. In: Sempere, J.M., García, P. (eds) Grammatical Inference: Theoretical Results and Applications. ICGI 2010. Lecture Notes in Computer Science(), vol 6339. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15488-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15488-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15487-4

  • Online ISBN: 978-3-642-15488-1

  • eBook Packages: Computer ScienceComputer Science (R0)