Advertisement

Exact DFA Identification Using SAT Solvers

  • Marijn J. H. Heule
  • Sicco Verwer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6339)

Abstract

We present an exact algorithm for identification of deterministic finite automata (DFA) which is based on satisfiability (SAT) solvers. Despite the size of the low level SAT representation, our approach is competitive with alternative techniques. Our contributions are fourfold: First, we propose a compact translation of DFA identification into SAT. Second, we reduce the SAT search space by adding lower bound information using a fast max-clique approximation algorithm. Third, we include many redundant clauses to provide the SAT solver with some additional knowledge about the problem. Fourth, we show how to use the flexibility of our translation in order to apply it to very hard problems. Experiments on a well-known suite of random DFA identification problems show that SAT solvers can efficiently tackle all instances. Moreover, our algorithm outperforms state-of-the-art techniques on several hard problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de la Higuera, C.: A bibliographical study of grammatical inference. Pattern Recognition 38(9), 1332–1348 (2005)CrossRefGoogle Scholar
  2. 2.
    Gold, E.M.: Complexity of automaton identification from given data. Information and Control 37(3), 302–320 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Lang, K.J., Pearlmutter, B.A., Price, R.A.: Results of the abbadingo one DFA learning competition and a new evidence-driven state merging algorithm. In: Honavar, V.G., Slutzki, G. (eds.) ICGI 1998. LNCS (LNAI), vol. 1433, p. 1. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Oncina, J., Garcia, P.: Inferring regular languages in polynomial update time. In: Pattern Recognition and Image Analysis. Series in Machine Perception and Artificial Intelligence, vol. 1, pp. 49–61. World Scientific, Singapore (1992)CrossRefGoogle Scholar
  5. 5.
    Oliveira, A.L., Marques-Silva, J.P.: Efficient search techniques for the inference of minimum sized finite state machines. In: SPIRE, pp. 81–89 (1998)Google Scholar
  6. 6.
    Abela, J., Coste, F., Spina, S.: Mutually compatible and incompatible merges for the search of the smallest consistent DFA. In: Paliouras, G., Sakakibara, Y. (eds.) ICGI 2004. LNCS (LNAI), vol. 3264, pp. 28–39. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Lang, K.J.: Faster algorithms for finding minimal consistent DFAs. Technical report, NEC Research Institute (1999)Google Scholar
  8. 8.
    Bugalho, M., Oliveira, A.L.: Inference of regular languages using state merging algorithms with search. Pattern Recognition 38, 1457–1467 (2005)zbMATHCrossRefGoogle Scholar
  9. 9.
    Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Marques-Silva, J.P., Glass, T.: Combinational equivalence checking using satisfiability and recursive learning. In: DATE 1999, p. 33. ACM, New York (1999)CrossRefGoogle Scholar
  11. 11.
    Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. J. Autom. Reason. 40(2-3), 195–220 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Coste, F., Nicolas, J.: Regular inference as a graph coloring problem. In: Workshop on Grammatical Inference, Automata Induction, and Language Acquisition, ICML 1997 (1997)Google Scholar
  13. 13.
    Grinchtein, O., Leucker, M., Piterman, N.: Inferring network invariants automatically. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 483–497. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from samples of their behavior. IEEE Trans. Comput. 21(6), 592–597 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Walsh, T.: SAT v CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–456. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Sakallah, K.A.: Symmetry and Satisfiability. In: Handbook of Satisfiability, ch. 10, pp. 289–338. IOS Press, Amsterdam (2009)Google Scholar
  17. 17.
    Kullmann, O.: On a generalization of extended resolution. Discrete Applied Mathematics 96-97(1), 149–176 (1999)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Jarvisalo, M., Biere, A., Heule, M.J.H.: Blocked clause elimination. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer, Heidelberg (2010)Google Scholar
  19. 19.
    Oliveira, A.L., Marques-Silva, J.P.: Efficient search techniques for the inference of minimum size finite automata. In: South American Symposium on String Processing and Information Retrieval, pp. 81–89. IEEE Computer Society Press, Los Alamitos (1998)CrossRefGoogle Scholar
  20. 20.
    Biere, A.: Picosat essentials. Journal on Satisfiability, Boolean Modeling and Computation 4, 75–97 (2008)zbMATHGoogle Scholar
  21. 21.
    Velev, M.N.: Exploiting hierarchy and structure to efficiently solve graph coloring as sat. In: ICCAD 2007: International conference on Computer-aided design, Piscataway, NJ, USA, pp. 135–142. IEEE Press, Los Alamitos (2007)CrossRefGoogle Scholar
  22. 22.
    Schaafsma, B., Heule, M.J.H., van Maaren, H.: Dynamic symmetry breaking by simulating Zykov contraction. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 223–236. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marijn J. H. Heule
    • 1
  • Sicco Verwer
    • 2
  1. 1.Delft University of Technology 
  2. 2.Eindhoven University of Technology 

Personalised recommendations