Skip to main content

Slime Mold Inspired Path Formation Protocol for Wireless Sensor Networks

  • Conference paper
Swarm Intelligence (ANTS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6234))

Included in the following conference series:

Abstract

Many biological systems are composed of unreliable components which self-organize efficiently into systems that can tackle complex problems. One such example is the true slime mold Physarum polycephalum which is an amoeba-like organism that seeks food sources and efficiently distributes nutrients throughout its cell body. The distribution of nutrients is accomplished by a self-assembled resource distribution network of small tubes with varying diameter which can evolve with changing environmental conditions without any global control. In this paper, we use a phenomenological model for the tube evolution in slime mold and map it to a path formation protocol for wireless sensor networks. By selecting certain evolution parameters in the protocol, the network may evolve toward single paths connecting data sources to a data sink. In other parameter regimes, the protocol may evolve toward multiple redundant paths. We present detailed analysis of a small model network. A thorough understanding of the simple network leads to design insights into appropriate parameter selection. We also validate the design via simulation of large-scale realistic wireless sensor networks using the QualNet network simulator.

Preliminary work of the paper appeared as a 2-page poster in the 3rd IEEE Int. Conf. on Self-Adaptive and Self-Organizing Systems (SASO 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Jacob, E., Cohen, I.: Cooperative organization of bacterial colonies: From genotype to morphotype. Annual Review of Microbiology 52, 779–806 (1998)

    Article  Google Scholar 

  2. Li, K., Thomas, K., Rossi, L.F., Shen, C.C.: Slime-mold inspired protocol for wireless sensor networks. In: Proc. of the 2nd IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO), pp. 319–328. IEEE Press, Los Alamitos (2008)

    Chapter  Google Scholar 

  3. Nakagaki, T., Yamada, H., Toth, A.: Maze-solving by an amoeboid organism. Nature 407(6803), 470–470 (2000)

    Article  Google Scholar 

  4. Scalable Network Technologies, Inc.: QualNet Simulator, http://www.scalable-networks.com

  5. Stewart, P.A.: The organization of movement in slime mold plasmodia. In: Primitive Motile Systems in Cell Biology, pp. 69–78. Academic Press, London (1964)

    Google Scholar 

  6. Tero, A., Kobayashi, R., Nakagaki, T.: A mathematical model for adaptive transport network in path finding by true slime mold. J. Theor. Biol. 244, 553–564 (2007)

    Article  MathSciNet  Google Scholar 

  7. Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, B.P., Fricker, M.D., Yumiki, K., Kobayashi, R., Nakagaki, T.: Rules for biologically inspired adaptive network design. Science 327, 439–442 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, K., Thomas, K., Torres, C., Rossi, L., Shen, CC. (2010). Slime Mold Inspired Path Formation Protocol for Wireless Sensor Networks. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2010. Lecture Notes in Computer Science, vol 6234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15461-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15461-4_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15460-7

  • Online ISBN: 978-3-642-15461-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics