Skip to main content

A Graph-Based Developmental Swarm Representation and Algorithm

  • Conference paper
Swarm Intelligence (ANTS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6234))

Included in the following conference series:

Abstract

Modelling natural processes requires the implementation of an expressive representation of the involved entities and their interactions. We present swarm graph grammars (SGGs) as a bio-inspired modelling framework that integrates aspects of formal grammars, graph-based representation and multi-agent simulation. In SGGs, the substitution of subgraphs that represent locally defined agent interactions drive the computational process of the simulation. The generative character of formal grammars is translated into an agent’s metabolic interactions, i.e. creating or removing agents from the system. Utilizing graphs to describe interactions and relationships between pairs or sets of agents offers an easily accessible way of modelling biological phenomena. Property graphs emerge through the application of local interaction rules; we use these graphs to capture various aspects of the interaction dynamics at any given step of a simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allen, L.J.S.: An Introduction to Stochastic Processes with Applications to Biology. Pearson Education, Upper Saddle River (2003)

    Google Scholar 

  2. de Boer, M.J.M., de Does, M.: The relationship between cell division pattern and global shape of young fern gametophytes. I. A model study. Botanical Gazette 151(4), 423–434 (1990)

    Article  Google Scholar 

  3. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Santa Fe Institute Studies in the Sciences of Complexity. Oxford University Press, New York (1999)

    MATH  Google Scholar 

  4. Burleigh, I., Suen, G., Jacob, C.: Dna in action! a 3D swarm-based model of a gene regulatory system. In: ACAL 2003, First Australian Conference on Artificial Life, Canberra, Australia (2003)

    Google Scholar 

  5. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization in Biological Systems. Princeton Studies in Complexity. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  6. Culik, K., Lindenmayer, A.: Parallel graph generating and graph recurrence systems for multicellular development. International Journal of General Systems 3(1), 53–66 (1976)

    Article  MathSciNet  Google Scholar 

  7. Denzinger, J., Kordt, M.: Evolutionary on-line learning of cooperative behavior with situation-action-pairs. In: ICMAS, pp. 103–110. IEEE Computer Society, Los Alamitos (2000)

    Google Scholar 

  8. Denzinger, J., Winder, C.: Combining coaching and learning to create cooperative character behavior. In: CIG. IEEE, Los Alamitos (2005)

    Google Scholar 

  9. Ehrig, H., Kreowski, H.J., Montanari, U., Rosenberg, G. (eds.): Handbook of Graph Grammars and Computing by Fraph Transformation, Concurrency, Parallelism, and Distribution, vol. 3. World Scientific Publishing, Singapore (1999)

    Google Scholar 

  10. Giavitto, J.L., Godin, C., Michel, O., Prusinkiewicz, P.: Computational Models for Integrative and Developmental Biology. In: Modelling and Simulation of biological processes in the context of genomics, Hermes, pp. 12–17 (July 2002)

    Google Scholar 

  11. Giavitto, J.L., Michel, O.: Data structure as topological spaces. Unconventional Models of Computation, 137–150 (2002)

    Google Scholar 

  12. Giavitto, J.L., Michel, O.: Modeling the topological organization of cellular processes. Biosystems 70(2), 149–163 (2003)

    Article  Google Scholar 

  13. Jacob, C., Burleigh, I.: Biomolecular swarms: An agent-based model of the lactose operon. Natural Computing 3(4), 361–376 (2004)

    Article  MathSciNet  Google Scholar 

  14. Jacob, C., Hushlak, G., Boyd, J., Nuytten, P., Sayles, M., Pilat, M.: Swarmart: Interactive art from swarm intelligence. Leonardo 40(3) (2007)

    Google Scholar 

  15. Jacob, C., Steil, S., Bergmann, K.: The swarming body: Simulating the decentralized defenses of immunity. In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS, vol. 4163, pp. 52–65. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Kauffman, S.: At Home in the Universe: The Search for the Laws of Self-Organization and Complexity. Oxford University Press, Oxford (1995)

    Google Scholar 

  17. Kniemeyer, O., Barczik, G., Hemmerling, R., Kurth, W.: Relational Growth Grammars – A Parallel Graph Transformation Approach with Applications in Biology and Architecture. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088, pp. 152–167. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Kniemeyer, O., Buck-Sorlin, G., Kurth, W.: Groimp as a platform for functional-structural modelling of plants. In: Vos, J., Marcelis, L.F.M., de Visser, P.H.B., Struik, P.C., Evers, J.B. (eds.) Functional-Structural Plant Modelling in Crop Production, pp. 43–52. Springer, Heidelberg (March 2006)

    Google Scholar 

  19. Kniemeyer, O., Buck-Sorlin, G.H., Kurth, W.: A graph grammar approach to artificial life. Artificial Life 10(4), 413–431 (2004)

    Article  Google Scholar 

  20. Kumar, S., Bentley, P. (eds.): On Growth, Form and Computers. Elsevier Academic Press, London (2003)

    Google Scholar 

  21. Kurth, W., Buck-Sorlin, G., Kniemeyer, O.: Relationale wachstumsgrammatiken: Ein formalismus zur spezifikation multiskalierter Struktur-Funktions-Modelle von pflanzen. In: Modellierung pflanzlicher Systeme aus historischer und aktueller Sicht. Landwirtschaft, vol. 7, pp. 36–45. Landesamtes für Verbraucherschutz, Landwirtschaft und Flurneuordnung, Brandenburg (2006)

    Google Scholar 

  22. Lindenmayer, A.: Developmental systems without cellular interactions, their languages and grammars. Journal of Theoretical Biology 30(3), 455–484 (1971)

    Article  Google Scholar 

  23. Lindenmayer, A.: An introduction to parallel map generating systems. Graph-Grammars and Their Application to Computer Science, 27–40 (1987)

    Google Scholar 

  24. von Mammen, S., Jacob, C.: The evolution of swarm grammars: Growing trees, crafting art and bottom-up design. IEEE Computational Intelligence Magazine 4(3), 10–19 (2009)

    Article  Google Scholar 

  25. von Mammen, S., Jacob, C., Kókai, G.: Evolving swarms that build 3D structures. In: IEEE Congress on Evolutionary Computation, CEC 2005, pp. 1434–1441. IEEE Press, Edinburgh (2005)

    Chapter  Google Scholar 

  26. Megason, S.G., McMahon, A.P.: A mitogen gradient of dorsal midline wnts organizes growth in the CNS. Development 129, 2087–2098 (2002)

    Google Scholar 

  27. Nagl, M.: On the relation between graph grammars and graph L-systems. Fundamentals of Computation Theory, 142–151 (1977)

    Google Scholar 

  28. von Neumann, J., Burks, A.W.: Theory of self-reproducing automata. University of Illinois Press, Urbana (1966)

    Google Scholar 

  29. Paun, G., Rozenberg, G.: A guide to membrane computing. Theoretical Computer Science 287(1), 73–100 (2002)

    Google Scholar 

  30. Reynolds, C.W.: Flocks, herds, and schools: A distributed behavioral model. Computer Graphics 21(4), 25–34 (1987)

    Article  MathSciNet  Google Scholar 

  31. Salazar-Ciudad, I.: Tooth Morphogenesis in vivo, in vitro, and in silico. Current Topics in Developmental Biology 81, 341–371 (2008)

    Article  Google Scholar 

  32. Sayama, H., Laramee, C.: Generative network automata: A generalized framework for modeling adaptive network dynamics using graph rewritings. Adaptive Networks, 311–332 (2009)

    Google Scholar 

  33. Schlick, T.: Molecular Modeling and Simulation: an interdisciplinary guide. Interdisciplinary Applied Mathematics, vol. 21. Springer, New York (2002)

    MATH  Google Scholar 

  34. Spicher, A., Michel, O., Giavitto, J.L.: A topological framework for the specification and the simulation of discrete dynamical systems. Cellular Automata, 238–247 (2004)

    Google Scholar 

  35. Theraulaz, G., Bonabeau, E.: Modelling the collective building of complex architectures in social insects with lattice swarms. Journal of Theoretical Biology 177(4), 381–400 (1995)

    Article  Google Scholar 

  36. Tomita, K., Kurokawa, H., Murata, S.: Graph-rewriting automata as a natural extension of cellular automata. Adaptive Networks, 291–309 (2009)

    Google Scholar 

  37. Walker, D.C., Southgate, J.: The virtual cell–a candidate co-ordinator for ’middle-out’ modelling of biological systems. Briefings in Bioinformatics 10(4), 450–461 (2009)

    Article  Google Scholar 

  38. Wolfram, S.: A new kind of science. Wolfram Media Inc., Champaign (2002)

    MATH  Google Scholar 

  39. Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley and Sons, Chichester (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

von Mammen, S., Phillips, D., Davison, T., Jacob, C. (2010). A Graph-Based Developmental Swarm Representation and Algorithm. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2010. Lecture Notes in Computer Science, vol 6234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15461-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15461-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15460-7

  • Online ISBN: 978-3-642-15461-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics