Abstract
Modelling natural processes requires the implementation of an expressive representation of the involved entities and their interactions. We present swarm graph grammars (SGGs) as a bio-inspired modelling framework that integrates aspects of formal grammars, graph-based representation and multi-agent simulation. In SGGs, the substitution of subgraphs that represent locally defined agent interactions drive the computational process of the simulation. The generative character of formal grammars is translated into an agent’s metabolic interactions, i.e. creating or removing agents from the system. Utilizing graphs to describe interactions and relationships between pairs or sets of agents offers an easily accessible way of modelling biological phenomena. Property graphs emerge through the application of local interaction rules; we use these graphs to capture various aspects of the interaction dynamics at any given step of a simulation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Allen, L.J.S.: An Introduction to Stochastic Processes with Applications to Biology. Pearson Education, Upper Saddle River (2003)
de Boer, M.J.M., de Does, M.: The relationship between cell division pattern and global shape of young fern gametophytes. I. A model study. Botanical Gazette 151(4), 423–434 (1990)
Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Santa Fe Institute Studies in the Sciences of Complexity. Oxford University Press, New York (1999)
Burleigh, I., Suen, G., Jacob, C.: Dna in action! a 3D swarm-based model of a gene regulatory system. In: ACAL 2003, First Australian Conference on Artificial Life, Canberra, Australia (2003)
Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization in Biological Systems. Princeton Studies in Complexity. Princeton University Press, Princeton (2003)
Culik, K., Lindenmayer, A.: Parallel graph generating and graph recurrence systems for multicellular development. International Journal of General Systems 3(1), 53–66 (1976)
Denzinger, J., Kordt, M.: Evolutionary on-line learning of cooperative behavior with situation-action-pairs. In: ICMAS, pp. 103–110. IEEE Computer Society, Los Alamitos (2000)
Denzinger, J., Winder, C.: Combining coaching and learning to create cooperative character behavior. In: CIG. IEEE, Los Alamitos (2005)
Ehrig, H., Kreowski, H.J., Montanari, U., Rosenberg, G. (eds.): Handbook of Graph Grammars and Computing by Fraph Transformation, Concurrency, Parallelism, and Distribution, vol. 3. World Scientific Publishing, Singapore (1999)
Giavitto, J.L., Godin, C., Michel, O., Prusinkiewicz, P.: Computational Models for Integrative and Developmental Biology. In: Modelling and Simulation of biological processes in the context of genomics, Hermes, pp. 12–17 (July 2002)
Giavitto, J.L., Michel, O.: Data structure as topological spaces. Unconventional Models of Computation, 137–150 (2002)
Giavitto, J.L., Michel, O.: Modeling the topological organization of cellular processes. Biosystems 70(2), 149–163 (2003)
Jacob, C., Burleigh, I.: Biomolecular swarms: An agent-based model of the lactose operon. Natural Computing 3(4), 361–376 (2004)
Jacob, C., Hushlak, G., Boyd, J., Nuytten, P., Sayles, M., Pilat, M.: Swarmart: Interactive art from swarm intelligence. Leonardo 40(3) (2007)
Jacob, C., Steil, S., Bergmann, K.: The swarming body: Simulating the decentralized defenses of immunity. In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS, vol. 4163, pp. 52–65. Springer, Heidelberg (2006)
Kauffman, S.: At Home in the Universe: The Search for the Laws of Self-Organization and Complexity. Oxford University Press, Oxford (1995)
Kniemeyer, O., Barczik, G., Hemmerling, R., Kurth, W.: Relational Growth Grammars – A Parallel Graph Transformation Approach with Applications in Biology and Architecture. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088, pp. 152–167. Springer, Heidelberg (2008)
Kniemeyer, O., Buck-Sorlin, G., Kurth, W.: Groimp as a platform for functional-structural modelling of plants. In: Vos, J., Marcelis, L.F.M., de Visser, P.H.B., Struik, P.C., Evers, J.B. (eds.) Functional-Structural Plant Modelling in Crop Production, pp. 43–52. Springer, Heidelberg (March 2006)
Kniemeyer, O., Buck-Sorlin, G.H., Kurth, W.: A graph grammar approach to artificial life. Artificial Life 10(4), 413–431 (2004)
Kumar, S., Bentley, P. (eds.): On Growth, Form and Computers. Elsevier Academic Press, London (2003)
Kurth, W., Buck-Sorlin, G., Kniemeyer, O.: Relationale wachstumsgrammatiken: Ein formalismus zur spezifikation multiskalierter Struktur-Funktions-Modelle von pflanzen. In: Modellierung pflanzlicher Systeme aus historischer und aktueller Sicht. Landwirtschaft, vol. 7, pp. 36–45. Landesamtes für Verbraucherschutz, Landwirtschaft und Flurneuordnung, Brandenburg (2006)
Lindenmayer, A.: Developmental systems without cellular interactions, their languages and grammars. Journal of Theoretical Biology 30(3), 455–484 (1971)
Lindenmayer, A.: An introduction to parallel map generating systems. Graph-Grammars and Their Application to Computer Science, 27–40 (1987)
von Mammen, S., Jacob, C.: The evolution of swarm grammars: Growing trees, crafting art and bottom-up design. IEEE Computational Intelligence Magazine 4(3), 10–19 (2009)
von Mammen, S., Jacob, C., Kókai, G.: Evolving swarms that build 3D structures. In: IEEE Congress on Evolutionary Computation, CEC 2005, pp. 1434–1441. IEEE Press, Edinburgh (2005)
Megason, S.G., McMahon, A.P.: A mitogen gradient of dorsal midline wnts organizes growth in the CNS. Development 129, 2087–2098 (2002)
Nagl, M.: On the relation between graph grammars and graph L-systems. Fundamentals of Computation Theory, 142–151 (1977)
von Neumann, J., Burks, A.W.: Theory of self-reproducing automata. University of Illinois Press, Urbana (1966)
Paun, G., Rozenberg, G.: A guide to membrane computing. Theoretical Computer Science 287(1), 73–100 (2002)
Reynolds, C.W.: Flocks, herds, and schools: A distributed behavioral model. Computer Graphics 21(4), 25–34 (1987)
Salazar-Ciudad, I.: Tooth Morphogenesis in vivo, in vitro, and in silico. Current Topics in Developmental Biology 81, 341–371 (2008)
Sayama, H., Laramee, C.: Generative network automata: A generalized framework for modeling adaptive network dynamics using graph rewritings. Adaptive Networks, 311–332 (2009)
Schlick, T.: Molecular Modeling and Simulation: an interdisciplinary guide. Interdisciplinary Applied Mathematics, vol. 21. Springer, New York (2002)
Spicher, A., Michel, O., Giavitto, J.L.: A topological framework for the specification and the simulation of discrete dynamical systems. Cellular Automata, 238–247 (2004)
Theraulaz, G., Bonabeau, E.: Modelling the collective building of complex architectures in social insects with lattice swarms. Journal of Theoretical Biology 177(4), 381–400 (1995)
Tomita, K., Kurokawa, H., Murata, S.: Graph-rewriting automata as a natural extension of cellular automata. Adaptive Networks, 291–309 (2009)
Walker, D.C., Southgate, J.: The virtual cell–a candidate co-ordinator for ’middle-out’ modelling of biological systems. Briefings in Bioinformatics 10(4), 450–461 (2009)
Wolfram, S.: A new kind of science. Wolfram Media Inc., Champaign (2002)
Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley and Sons, Chichester (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
von Mammen, S., Phillips, D., Davison, T., Jacob, C. (2010). A Graph-Based Developmental Swarm Representation and Algorithm. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2010. Lecture Notes in Computer Science, vol 6234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15461-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-15461-4_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15460-7
Online ISBN: 978-3-642-15461-4
eBook Packages: Computer ScienceComputer Science (R0)