Abstract
Consideration is given to a discrete-time queueing system with inverse discipline, service interruption and repeat again service, second-order geometrical demand arrival, arbitrary (discrete) distribution of demand length and finite storage. Each demand entering the queue has random volume besides its length. The total volume of the demands in the queue is limited by a certain number. Formulae for the stationary probabilities of states and the stationary waiting time distribution in the queuing system are obtained.
Keywords
- Queueing system
- discrete time
- finite buffer
- the demand length and volume
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Romm, E.L., Skitovich, V.V.: On One Generalization of the Erlang Problem. Avtomatika i Telemekhanika 6, 164–167 (1971)
Alexandrov, A.M., Katz, B.A.: Serving heterogeneous customer flows. Izvestiya AN SSSR. Tekhnicheskaya Kibernetika 2, 47–53 (1973)
Tikhonenko, O.M.: Queueing models in data processing systems. Izdatel’stvo Universitetskoe, Minsk (1990)
Pechinkin, A.V., Pechinkina, O.A.: An M k /G/1/n system with LIFO discipline and constraints on the total number of customers. Vestnik Rossiyskogo Universiteta Druzhby Narodov. Ser. Prikladnaya Matematika i Informatika 1, 86–93 (1996)
Pechinkin, A.V.: Queueing system with LIFO discipline and constraints on the total number of customers. Vestnik Rossiyskogo Universiteta Druzhby Narodov, Ser. Prikladnaya Matematika i Informatika 2, 85–99 (1996)
Pechinkin, A.V.: M l /G/1/n system with LIFO discipline and constrained total amount of items. Automation and Remote Control 4, 545–553 (1998)
Abramushkina, T.V., Aparina, S.V., Kuznetsova, E.N., Pechinkin, A.V.: Numerical techniques for calculating stationary probabilities of states of M/G/1/n system with LIFO PR discipline and constraints on the total number of customers. Vestnik Rossiyskogo Universiteta Druzhby Narodov, Ser. Prikladnaya Matematika i Informatika 1, 40–47 (1998)
Bocharov, P.P., D’Apice, C., Pechinkin, A.V., Salerno, S.: Queueing theory. Modern Probability and Statistics. VSP Publishing, Utrecht (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pechinkin, A., Shorgin, S. (2010). A Geo m /G/1/n Queueing System with LIFO Discipline, Service Interruptions and Repeat Again Service, and Restrictions on the Total Volume of Demands. In: Vinel, A., Bellalta, B., Sacchi, C., Lyakhov, A., Telek, M., Oliver, M. (eds) Multiple Access Communications. MACOM 2010. Lecture Notes in Computer Science, vol 6235. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15428-7_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-15428-7_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15427-0
Online ISBN: 978-3-642-15428-7
eBook Packages: Computer ScienceComputer Science (R0)