Advertisement

Modification of Nano/Micromaterials

  • Hironori TohmyohEmail author
  • Mikio Muraoka
Chapter
  • 1k Downloads
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Although nano/micromaterials have attracted considerable attention due to their excellent physical properties and geometrical merits, these should be modified for specific purposes or be assembled in systems for many fields of application. The cutting and welding of materials must be the principle operation for this purpose. The welding and cutting technology utilizing Joule heat is first described together with some experiments and applications. First, heat transfer problem in thin wires are treated. And then, two Pt wires with diameters of about 800 nm are shown to successfully be welded by Joule heating. Melting and solidification at the point contact of thin wires occurred continuously under a constant current supply and the welding of wires is completed within several seconds in self-completed manner. Moreover, the welding technology for low-dimensional materials have been found to be effective for manipulating materials and for generating functional elements, e.g., electromagnetic rings and thermoelectric elements. A unique technique for creating nanocoils from straight nanowires is described.

Keywords

Joule Heating Linear Elastic Fracture Mechanic Thermal Boundary Condition Thin Wire Misfit Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

H. Tohmyoh acknowledges partial support from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan under Grant-in-Aid for Young Scientists (A) Grant No. 21686012 and S. Fukui for his help in preparing the manuscript. M. Muraoka acknowledges partial support from the Japan Society for the Promotion of Science (JSPS), through the Grant-in-Aid for Scientific Research (B) Grant No. 20360049 and Ms. Y. Ishigami and Y. Toku for their help in preparing the manuscript.

References

  1. 1.
    Anderson, O.L.: Determination and some uses of isotropic elastic constants of polycrystalline aggregates using single-crystal data. In: Mason, W.P. (ed.) Physical Acoustics III—Part B. Academic Press, New York (1965)Google Scholar
  2. 2.
    Bhola, B., Song, H.C., Tazawa, H., Steier, W.H.: Polymer microresonator strain sensors. IEEE Photon Technol. Lett. 17, 867–869 (2005)CrossRefGoogle Scholar
  3. 3.
    Bintoro, J.S., Papania, A.D., Berthelot, Y.H., Hesketh, P.J.: Bidirectional electromagnetic microactuator with microcoil fabricated on a single wafer: Static characteristics of membrane displacements. J. Micromech. Microeng. 15, 1378–1388 (2005)CrossRefGoogle Scholar
  4. 4.
    Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.-K., Goddard III, W.A., Heath, J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171 (2008).CrossRefGoogle Scholar
  5. 5.
    Brady, G.S., Clauser, H.R., Vaccari, J.A.: Materials Handbook, 15th edn. McGraw-Hill, New York (2002)Google Scholar
  6. 6.
    Cahn, J.W.: Surface stress and the chemical equilibrium of small crystals – I. the case of the isotropic surface. Acta Metall. 28, 1333–1338 (1980)CrossRefGoogle Scholar
  7. 7.
    Cammarata, R.C.: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46, 1–38 (1994)CrossRefGoogle Scholar
  8. 8.
    Carl, A., Lohau, J., Kirsch, S., Wassermann, E.F.: Magnetization reversal and coercivity of magnetic-force microscopy tips. J. Appl. Phys. 89, 6098–6104 (2001)CrossRefGoogle Scholar
  9. 9.
    Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids, 2nd edn. Oxford University Press, London (1959)Google Scholar
  10. 10.
    Chen, Y., Lebib, A., Li, S.P., Natali, M., Peyrade, D., Cambril, E.: Nanoimprint fabrication of micro-rings for magnetization reversal studies. Microelectron. Eng. 5758, 405–410 (2001)CrossRefGoogle Scholar
  11. 11.
    Day, G.W., Gaddy, O.L., Iversen, R.J.: Detection of fast infrared laser pulses with thin film thermocouples. Appl. Phys. Lett. 13, 289–290 (1968)CrossRefGoogle Scholar
  12. 12.
    Dick, K., Dhanasekaran, T., Zhang, Z., Meisel, D.: Size-dependent melting of silica-encapsulated gold nanoparticles. J. Am. Chem. Soc. 124, 2312–2317 (2002)CrossRefGoogle Scholar
  13. 13.
    Doelling, C.M., Vanderlick, T.K., Song, J., Srolovitz, D.: Nanospot welding and contact evolution during cycling of a model microswitch. J. Appl. Phys. 101, 124303(1–7) (2007)Google Scholar
  14. 14.
    Doerner, M.F., Nix, W.D.: Stress and deformation processes in thin films on substrates. Crit. Rev. Solid State Mater. Sci. 14, 225–268 (1988)CrossRefGoogle Scholar
  15. 15.
    Duan, J., Yang, S., Liu, H., Gong, J., Huang, H., Zhao, X., Tang, J., Zhang, R., Du, Y.: AlN nanorings. J. Cryst. Growth 283, 291–296 (2005)CrossRefGoogle Scholar
  16. 16.
    García-Labiano, F., de Diego, L.F., Adánez, J., Abad, A., Gayán, P.: Temperature variations in the oxygen carrier particles during their reduction and oxidation in a chemical-looping combustion system. Chem. Eng. Sci. 60, 851–862 (2005)CrossRefGoogle Scholar
  17. 17.
    Goldstein, A.N., Echer, C.M., Alivisatos, A.P.: Melting in semiconductor nanocrystals. Science 256, 1425–1427 (1992)CrossRefGoogle Scholar
  18. 18.
    Hirayama, H., Kawamoto, Y., Ohshima, Y., Takayanagi, K.: Nanospot welding of carbon nanotubes. Appl. Phys. Lett. 79, 1169–1171 (2001)CrossRefGoogle Scholar
  19. 19.
    Huang, J., Kaner, R.B.: Flash welding of conducting polymer nanofibres. Nature Mater. 3, 783–786 (2004)CrossRefGoogle Scholar
  20. 20.
    Huang, M., Boon, C., Roberts, M., Savage, D.E., Lagally, M.G., Shaji, N., Qin, H., Blick, R., Nairn, J.A., Liu, F.: Nanomechanical architecture of strained bilayer thin films: from design principles to experimental fabrication. Adv. Mater. 17, 2860–2864 (2005)CrossRefGoogle Scholar
  21. 21.
    Jiang, X., Herricks, T., Xia, Y.: CuO nanowires can be synthesized by heating copper substrates in air. Nano. Lett. 2, 1333–1338 (2002)CrossRefGoogle Scholar
  22. 22.
    Jin, C., Suenaga, K., Iijima, S.: Plumbing carbon nanotubes. Nature Nanotechnol. 3, 17–21 (2008)CrossRefGoogle Scholar
  23. 23.
    Kim, J.W., Jung, M.H., Park, N.K., Yun, E.J.: Microfabrication of solenoid-type RF SMD chip inductors with an Al2O3 core. Curr. Appl. Phys. 8, 631–636 (2008)CrossRefGoogle Scholar
  24. 24.
    Kim, S.J., Jang, D.-J.: Laser-induced nanowelding of gold nanoparticles. Appl. Phys. Lett. 86, 033112(1–3) (2005)Google Scholar
  25. 25.
    Koch, R.: The intrinsic stress of polycrystalline and epitaxial thin metal films. J. Phys. Condens. Matter 6, 9519–9550 (1994)CrossRefGoogle Scholar
  26. 26.
    Kollár, L.P., Springer, G.S.: Mechanics of Composite Structures. Cambridge University, Cambridge (2003)CrossRefGoogle Scholar
  27. 27.
    Kong, X.Y., Wang, Z.L.: Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano. Lett. 3, 1625–1631 (2003)CrossRefGoogle Scholar
  28. 28.
    Krasheninnikov, A.V., Nordlund, K., Keinonen, J., Banhart, F.: Ion-irradiation-induced welding of carbon nanotubes. Phys. Rev. B. 66, 245403(1–6) (2002)CrossRefGoogle Scholar
  29. 29.
    Lee, C.Y., Chang, H.T., Wen, C.Y.: A MEMS-based valveless impedance pump utilizing electromagnetic actuation. J. Micromech. Microeng. 18, 035044(1–9) (2008)CrossRefGoogle Scholar
  30. 30.
    Li, D., Wu, Y., Kim, P., Shi, L., Yang, P., Majumdar, A.: Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83, 2934–2936 (2003)CrossRefGoogle Scholar
  31. 31.
    Li, X., Gao, H., Murphy, C.J., Caswell, K.K.: Nanoindentation of silver nanowires. Nano. Lett. 3, 1495–1498 (2003)CrossRefGoogle Scholar
  32. 32.
    Liu, H., Cui, H., Wang, J., Gao, L., Hang, F., Boughton, R.I., Jiang, M.: Growth of NaFe4P12 skutterudite single crystalline nanosprings synthesized through a hydrothermal-reduction-alloying method. J. Phys. Chem. B 108, 13254–13257 (2004)CrossRefGoogle Scholar
  33. 33.
    Mcllroy, D.N., Zhang, D., Kranov, Y., Norton, M.G.: Nanospring. Appl. Phys. Lett. 79, 1540–1542 (2001)CrossRefGoogle Scholar
  34. 34.
    Muraoka, M., Settsu, N., Saka, M.: Residual-strain-induced nanocoils of metallic nanowires. J. Nanosci. Nanotechnol. 8, 439–442 (2008)CrossRefGoogle Scholar
  35. 35.
    Nakamatsu, K., Nagase, M., Igaki, J., Namatsu, H., Matsui, S.: Mechanical characteristics and its annealing effect of diamondlike-carbon nanosprings fabricated by focused-ion-beam chemical vapor deposition. J. Vac. Sci. Technol. B 23, 2801–2805 (2005)CrossRefGoogle Scholar
  36. 36.
    Peng, Y., Cullis, T., Inkson, B.: Bottom-up nanoconstruction by the welding of individual metallic nanoobjects using nanoscale solder. Nano. Lett. 9, 91–96 (2009)CrossRefGoogle Scholar
  37. 37.
    Sacharoff, A.C., Westervelt, R.M.: Physical properties of ultrathin drawn Pt wires. Phys. Rev. B 29, 6411–6418 (1984)CrossRefGoogle Scholar
  38. 38.
    Saka, M., Sun, Y.X., Ahmed, S.R.: Heat conduction in a symmetric body subjected to a current flow of symmetric input and output. Int. J. Thermal. Sci. 48, 114–121 (2009)CrossRefGoogle Scholar
  39. 39.
    Saka, M., Yamaya, F., Tohmyoh, H.: Rapid and mass growth of stress-induced nanowhiskers on the surfaces of evaporated polycrystalline Cu films. Scr. Mater. 56, 1031–1034 (2007)CrossRefGoogle Scholar
  40. 40.
    Schmid, R.: A thermodynamic analysis of the Cu–O system with an associated solution model. Metall. Trans. B 14, 473–481 (1983)CrossRefGoogle Scholar
  41. 41.
    Schmidt, O.G., Eberl, K.: Thin solid films roll up into nanotubes. Nature 410, 168 (2001)CrossRefGoogle Scholar
  42. 42.
    Seidemann, V., Büttgenbach, S.: Closely coupled micro coils with integrated flux guidance: fabrication technology and application to proximity and magnetoelastic force sensors. IEEE Sensors J. 3, 615–621 (2003)CrossRefGoogle Scholar
  43. 43.
    Shen, G.Z., Bando, Y., Zhi, C.Y., Yuan, X.L., Sekiguchi, T., Golberg, D.: Single-crystalline cubic structured InP nanosprings. Appl. Phys. Lett. 88, 243106(1–3) (2006)Google Scholar
  44. 44.
    Shi, L., Plyasunov, S., Bachtold, A., McEuen, P.L., Majumdar, A.: Scanning thermal microscopy of carbon nanotubes using batch-fabricated probes. Appl. Phys. Lett. 77, 4295–4297 (2000)CrossRefGoogle Scholar
  45. 45.
    Sutanto, J., Hesketh, P.J., Berthelot, Y.H.: Design, microfabrication and testing of a CMOS compatible bistable electromagnetic microvalve with latching/unlatching mechanism on a single wafer. J. Micromech. Microeng. 16, 266–275 (2006)CrossRefGoogle Scholar
  46. 46.
    Tan, E.P.S., Zhu, Y., Dai, L., Sow, C.H., Tan, V.B.C., Lim, C.T.: Crystallinity and surface effects on Young’s modulus of CuO nanowires. Appl. Phys. Lett. 90, 163112(1–3) (2007)Google Scholar
  47. 47.
    Thornton, J.A., Hoffman, D.W.: Stress-related effects in thin films. Thin Solid Films 171, 5–31 (1989)CrossRefGoogle Scholar
  48. 48.
    Tohmyoh, H.: A governing parameter for the melting phenomenon at nanocontacts by Joule heating and its application to joining together two thin metallic wires. J. Appl. Phys. 105, 014907(1–9) (2009)Google Scholar
  49. 49.
    Tohmyoh, H., Fukui, S.: Self-completed Joule heat welding of ultrathin Pt wires. Phys. Rev. B 80, 155403(1–7) (2009)Google Scholar
  50. 50.
    Tohmyoh, H., Imaizumi, T., Hayashi, H., Saka, M.: Welding of Pt nanowires by Joule heating. Scr. Mater. 57, 953–956 (2007)CrossRefGoogle Scholar
  51. 51.
    Tohmyoh, H., Takeda, H., Akanda, M.A.S.: Evaluation of mechanical and electrical properties of very-thin Pt wires by utilizing joining technique with Joule heating. J. Soc. Mater. Sci. 58, 847–851 (2009) (in Japanese)Google Scholar
  52. 52.
    Tohmyoh, H., Takeda, H., Khan, M.N.I., Saka, M.: Fabrication of freestanding thin Pt/W thermocouple by Joule heat welding. Proc. EuroSimE. 2010, 1–4 (2010)Google Scholar
  53. 53.
    Tohmyoh, H., Takeda, H, Saka, M.: Fabrication of a free-standing Pt MR on an electrode chip as a small magnetic source. J. Micromech. Microeng. 19, 085013(1–5) (2009)Google Scholar
  54. 54.
    Toku, Y., Muraoka, M.: Helical formation of coated nanowires by viscous flow of core material. Nanosci. Nanotechnol. Lett. (2010) (in press)Google Scholar
  55. 55.
    Townsend, P.H., Barnett, D.M., Brunner, T.A.: Elastic relationships in layered composite media with approximation for the case of thin films on a thick substrate. J. Appl. Phys. 62, 4438–4444 (1987)CrossRefGoogle Scholar
  56. 56.
    Tsai, S.H., Shiu, C.T., Jong, W.J., Shih, H.C.: The welding of carbon nanotubes. Carbon 38, 1899–1902 (2000)CrossRefGoogle Scholar
  57. 57.
    Varadan, V.K., Hollinger, R.D., Varadan, V.V., Xie, J., Sharma, P.K.: Development and characterization of micro-coil carbon fibers by a microwave CVD system. Smart Mater. Struct. 9, 413–420 (2000)CrossRefGoogle Scholar
  58. 58.
    Wagner, R.S., Ellis, W.C.: Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964)CrossRefGoogle Scholar
  59. 59.
    Wang, J., Chen, X., Wang, G., Wang, B., Lu, W., Zhao, J.: Melting behavior in ultrathin metallic nanowires. Phys. Rev. B 66, 085408(1–5) (2002)Google Scholar
  60. 60.
    Wang, Z.L., Petroski, J.M., Green, T.C., El-Sayed, M.A.: Shape transformation and surface melting of cubic and tetrahedral platinum nanocrystals. J. Phys. Chem. B 102, 6145–6151 (1998)CrossRefGoogle Scholar
  61. 61.
    Watson, C.C., Chan, W.K.: High-spatial-resolution semiconductor characterization using a microwave eddy current probe. Appl. Phys. Lett. 78, 129–131 (2001)CrossRefGoogle Scholar
  62. 62.
    Williams, C.C., Wickramasinghe, H.K.: Scanning thermal profiler. Appl. Phys. Lett. 49, 1587–1589 (1986)CrossRefGoogle Scholar
  63. 63.
    Wu, B., Heidelberg, A., Boland, J.J.: Mechanical properties of ultrahigh-strength gold nanowires. Nature Mater. 4, 525–529 (2005)CrossRefGoogle Scholar
  64. 64.
    Wu, Y., Yang, P.: Melting and welding semiconductor nanowires in nanotubes. Adv. Mater. 13, 520–523 (2001)CrossRefGoogle Scholar
  65. 65.
    Xu, S., Tian, M., Wang, J., Xu, J., Redwing, J.M., Chan, M.H.W.: Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam. Small 1, 1221–1229 (2005)CrossRefGoogle Scholar
  66. 66.
    Yamaguchi, M., Suezawa, K., Arai, K.I., Takahashi, Y., Kikuchi, S., Shimada, Y., Li, W.D., Tanabe S, Ito, K.: Microfabrication and characteristics of magnetic thin-film inductors in the ultrahigh frequency region. J. Appl. Phys. 85, 7919–7922 (1999)CrossRefGoogle Scholar
  67. 67.
    Yang, R.S., Wang, Z.L.: Springs, rings, and spirals of rutile-structured tin oxide nanobelts. J. Am. Chem. Soc. 128, 1466–1467 (2006)CrossRefGoogle Scholar
  68. 68.
    Zhang, D., Alkhateeb, A., Han, H., Mahmood, H., Mcllroy, D.N.: Silicon carbide nanosprings. Nano. Lett. 3, 983–987 (2003)CrossRefGoogle Scholar
  69. 69.
    Zhang, X., Li, X.: Design, fabrication and characterization of optical microring sensors on metal substrates. J. Micromech. Microeng. 18, 015025(1–7) (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of NanomechanicsTohoku University SendaiJapan
  2. 2.Department of Mechanical EngineeringAkita UniversityAkitaJapan

Personalised recommendations