Evaluation of Electrical Properties

Part of the Engineering Materials book series (ENG.MAT.)


Electrical property is one of the important intrinsic properties of materials, which strongly affects the functionality of materials, especially for metallic nanomaterials. The evaluation of electrical properties plays a significant role in distinguishing the electrical factors of metallic nanomaterials. In this chapter, the methods for evaluating the electrical properties of metallic nanomaterials are described. First, the recent researches on the measurement of electrical properties of metallic nanomaterials are summarized. Then, four-point probe (FPP) method, which is the most common and effective method to measure the resistivity of metallic nanowires, is introduced. Next, a four-point AFM probe method which combines the conventional FPP method with the atomic force microscope thereby providing a capability to characterize the local resistivity of metallic nanomaterials is represented. Finally, a next-generation technique, microwave AFM method which can measure the topography and distribution of electrical properties of nanomaterials simultaneously, is explained.


Atomic Force Microscope Contact Resistance Standoff Distance Microwave Signal Atomic Force Microscope Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author acknowledges partial support from the Japan Society for the Promotion of Science under Grant-in-Aid for Scientific Research (A) Grant No. 20246028, and Dr. M. Chen for his help in preparing the manuscript.


  1. 1.
    Bid, A., Bora, A., Raychaudhuri, A.K.: Temperature dependence of the resistance of metallic nanowires of diameter ≥15 nm: applicability of Bloch-Grüneisen theorem. Phys. Rev. B 74(1–8), 035426 (2006)Google Scholar
  2. 2.
    Bøggild, P., Hansen, T.M., Kuhn, O., Grey, F., Junno, T., Montelius, L.: Scanning nanoscale multiprobes for conductivity measurements. Rev. Sci. Instrum. 71, 2781–2783 (2000)CrossRefGoogle Scholar
  3. 3.
    Boughton, R.I.: Size-dependent deviations from Matthiessens-rule in the resistivity of gallium. J. Phys. F 11, L155–L156 (1981)CrossRefGoogle Scholar
  4. 4.
    Braun, E., Eichen, Y., Sivan, U., Ben-Yoseph, G.: DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 39, 775–778 (1998)CrossRefGoogle Scholar
  5. 5.
    Chambers, R.G.: The conductivity of thin wires in magnetic field. Proc. Roy. Soc. Lond. Ser. A 202, 378–394 (1950)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Chaudhari, P., Habermeier, H.U.: Quantum localization in amorphous W-Re alloys. Phys. Rev. Lett. 44, 40–43 (1980)CrossRefGoogle Scholar
  7. 7.
    Cornelius, T.W., Toimil-Molares, M.E., Neumann, R., Karim, S.: Finite-size effects in the electrical transport properties of single bismuth nanowires. J. Appl. Phys. 100(1–5), 114307 (2006)Google Scholar
  8. 8.
    Dingle, R.B.: The electrical conductivity of thin wires. Proc. Roy. Soc. Lond. Ser. A 201, 545–560 (1950)zbMATHCrossRefGoogle Scholar
  9. 9.
    Duewer, F., Gao, C., Takeuchi, I., Xiang, X.D.: Tip-sample distance feedback control in a scanning evanescent microwave microscope. Appl. Phys. Lett. 74, 2696–2698 (1999)CrossRefGoogle Scholar
  10. 10.
    Durkan, C., Welland, M.E.: Size effects in the electrical resistivity of polycrystalline nanowires. Phys. Rev. B 61, 14215–14218 (2000)CrossRefGoogle Scholar
  11. 11.
    Fuchs, K., Wills, H.H.: The conductivity of thin films according to the electron theory of metals. Proc. Camb. Philos. Soc. 34, 100–108 (1938)CrossRefGoogle Scholar
  12. 12.
    Fujimoto, A., Zhang, L., Hosoi, A., Ju, Y.: Structure modification of M-AFM probe for the measurement of local conductivity. Proc. DTIP 22–26 (2010)Google Scholar
  13. 13.
    Giordano, N.: Experimental study of localization in thin wires. Phys. Rev. B 22, 5635–5654 (1980)CrossRefGoogle Scholar
  14. 14.
    Giordano, N., Gilson, W., Prober, D.E.: Experimental study of Anderson localization in thin wires. Phys. Rev. Lett. 43, 725–728 (1979)CrossRefGoogle Scholar
  15. 15.
    Gu, W., Choi, H., Kim, K.: Universal approach to accurate resistivity measurement for a single nanowire: theory and application. Appl. Phys. Lett. 89(1–3), 253102 (2006)Google Scholar
  16. 16.
    Hasegawa, S., Shiraki, I., Tanikawa, T., Petersen, C.L., Hansen, T.M., Boggild, P., Grey, F.: Direct measurement of surface-state conductance by microscopic four-point probe method. J. Phys. Condens. Matter 14, 8379–8392 (2002)CrossRefGoogle Scholar
  17. 17.
    Heisig, S., Danzebrink, H.U., Leyk, A., Mertin, W., Münster, S., Oesterschulze, E.: Monolithic gallium arsenide cantilever for scanning near-field microscopy. Ultramicroscopy 71, 99–105 (1998)Google Scholar
  18. 18.
    Hinode, K., Hanaoka, Y., Takeda, K., Kondo, S.: Resistivity increase in ultrafine-line copper conductor for ULSIs, Part 2. Jpn. J. Appl. Phys. 40, L1097–L1099 (2001)Google Scholar
  19. 19.
    Huang, Q., Lilley, C.M., Bode, M.: Surface scattering effect on the electrical resistivity of single crystalline silver nanowires self-assembled on vicinal Si (001). Appl. Phys. Lett. 95, 103112 (2009)CrossRefGoogle Scholar
  20. 20.
    Iwata, N., Wakayama, T., Yamada, S.: Establishment of basic process to fabricate full GaAs cantilever for scanning probe microscope applications. Sens. Actuators A Phys. 111, 26–31 (2004)CrossRefGoogle Scholar
  21. 21.
    Josell, D., Burkhard, C., Li, Y., Cheng, Y.-W., Keller, R.R., Witt, C.A., Kelley, D.R., Bonevich, J.E., Baker, B.C., Moffat, T.P.: Electrical properties of superfilled sub-micrometer silver metallizations. J. Appl. Phys. 96, 759–768 (2004)CrossRefGoogle Scholar
  22. 22.
    Josell, D., Brongersma, S.H., Tökei, Z.: Size-dependent resistivity in nanoscale interconnects. Annu. Rev. Mater. Res. 39, 231–254 (2009)CrossRefGoogle Scholar
  23. 23.
    Ju, Y., Saka, M., Abé, H.: NDI of delamination in IC packages using millimeter-waves, IEEE. Trans. Instrum. Meas. 50, 1019–1023 (2001)CrossRefGoogle Scholar
  24. 24.
    Ju, Y., Inoue, K., Saka, M.: Contactless measurement of electrical conductivity of semicon-ductor wafers using the reflection of millimeter waves. Appl. Phys. Lett. 81, 3585–3587 (2002)CrossRefGoogle Scholar
  25. 25.
    Ju, Y., Ju, B.F., Saka, M.: Microscopic four-point atomic force microscope probe technique for local electrical conductivity measurement. Rev. Sci. Instrum. 76(1–3), 086101 (2005a)Google Scholar
  26. 26.
    Ju, Y., Sato, H., Soyama, H.: Fabrication of the tip of GaAs microwave probe by wet etching. Proc interPACK 2005 (CD-ROM), 73140 (2005b)Google Scholar
  27. 27.
    Ju, Y., Hirosawa, Y., Soyama, H., Saka, M.: Contactless measurement of electrical conduc-tivity of Si wafers independent of wafer thickness. Appl. Phys. Lett. 87(1–3), 162102 (2005c)Google Scholar
  28. 28.
    Ju, B.F., Ju, Y., Saka, M.: Quantitative measurement of submicrometre electrical conductivity. J. Phys. D Appl. Phys. 40, 7467–7470 (2007a)CrossRefGoogle Scholar
  29. 29.
    Ju, Y., Kobayashi, T., Soyama, H.: Fabrication of a GaAs microwave probe used for atomic forcemicroscope. Proc interPACK 2007 (CD-ROM), 33613 (2007b)Google Scholar
  30. 30.
    Ju, Y., Kobayashi, T., Soyama, H.: Development of a nanostructural microwave probe based on GaAs. Microsyst. Technol. 14, 1021–1025 (2008)CrossRefGoogle Scholar
  31. 31.
    Ju, Y., Hamada, M., Kobayashi, T., Soyama, H.: A microwave probe nanostructure for atomic force microscopy. Microsyst. Technol. 15, 1195–1199 (2009)CrossRefGoogle Scholar
  32. 31.
    Keren, K., Krueger, M., Gilad, R., Ben-Yoseph, G., Sivan, U., Braun, E.: Sequence-specific molecular lithography on single DNA molecules. Science 297, 72–75 (2002)CrossRefGoogle Scholar
  33. 33.
    Kopanski, J.J., Marchiando, J.F., Loweny, J.R.: Scanning capacitance microscopy measurements and modeling: Progress towards dopant profiling of silicon. J. Vac. Sci. Technol. B 14, 242–247 (1996)CrossRefGoogle Scholar
  34. 34.
    Leunissen, L.H.A., Zhang, W., Wu, W., Brongersma, S.H.: Impact of line edge roughness on copper interconnects. J. Vac. Sci. Technol. B 24, 1859–1862 (2006)CrossRefGoogle Scholar
  35. 35.
    Liu, K., Chien, C.L., Searson, P.C.: Finite-size effects in bismuth nanowires. Phys. Rev. B 58, 14681–14684 (1998)CrossRefGoogle Scholar
  36. 36.
    MacDonald, D.K.C., Sarginson, K.: Size effect variation of the electrical conductivity of metals. Proc. Roy. Soc. Lond. Ser. A 203, 223–240 (1950)zbMATHCrossRefGoogle Scholar
  37. 37.
    MacFadyen, D.N.: On the preferential etching of GaAs by H2SO4-H2O2-H2O. J. Electrochem. Soc. 130, 1934–1941 (1983)CrossRefGoogle Scholar
  38. 38.
    Maîtrejean, S., Gers, R., Mourier, T., Toffoli, A., Passemard, G.: Experimental measurements of electron scattering parameters in Cu narrow lines. Microelectron. Eng. 83, 2396–2401 (2006)CrossRefGoogle Scholar
  39. 39.
    Marom, H., Mullin, J., Eizenberg, M.: Size-dependent resistivity of nanometric copper wires. Phys. Rev. B 74(1–9), 045411 (2006)Google Scholar
  40. 40.
    Martin, Y., Abraham, D.W., Wickramasinghe. H.K.: High-resolution capacitance measurement and potentiometry by force microscopy. Appl. Phys. Lett. 52, 1103–1105 (1988)CrossRefGoogle Scholar
  41. 41.
    Mayadas, A.F.: Intrinsic resistivity and electron mean free path in aluminum films. J. Appl. Phys. 39, 4241–4245 (1968)CrossRefGoogle Scholar
  42. 42.
    Mayadas, A.F., Shatzkes, M.: Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces. Phys. Rev. B 1, 1382–1389 (1970)CrossRefGoogle Scholar
  43. 43.
    Mayadas, A.F., Shatzkes, M., Janak, J.F.: Electrical resistivity model for polycrystalline films: the case of specular reflection at external surfaces. Appl. Phys. Lett. 14, 345–347 (1969)CrossRefGoogle Scholar
  44. 44.
    Nagase, M., Takahashi, H., Shirakawabe, Y., Namatsu, H.: Nano-four-point probes on microcantilever system fabricated by focused ion beam. Jpn. J. Appl. Phys. 42:4856–4860 (2003)CrossRefGoogle Scholar
  45. 45.
    Petersen, C.L., Grey, F., Shiraki, I., Hasegawa, S.: Microfour-point probe for studying electronic transport through surface states. Appl. Phys. Lett. 77, 3782–3784 (2000)CrossRefGoogle Scholar
  46. 46.
    Petersen, C.L., Hansen, T.M., Bøggild, P., Boisen, A., Hansen, O., Hassenkam, T., Grey, F.: Scanning microscopic four-point conductivity probes. Sens. Actuators A. Physics 96, 53–58 (2002)CrossRefGoogle Scholar
  47. 47.
    Petzold, M., Landgraf, J., Füting, M., Olaf, J.M.: Application of atomic force microscopy for microindentation testing. Thin Sol. Films 264, 153–158 (1995)CrossRefGoogle Scholar
  48. 48.
    Pozar, D.M.: Microwave Engineering, 2nd edn. Wiley, New York (1998).Google Scholar
  49. 49.
    Richter, J., Mertig, M., Pompe, W.: Construction of highly conductive nanowires on a DNA template. Appl. Phys. Lett. 78, 536–538 (2001)CrossRefGoogle Scholar
  50. 50.
    Richter, J., Mertig, M., Pompe, W., Vinzelberg, H.: Low-temperature resistance of DNA-templated nanowires. Appl. Phys. A 74, 725–728 (2002)CrossRefGoogle Scholar
  51. 51.
    Schindler, G., Steinlesberger, G., Engelhardt, M., Steinhögl, W.: Electrical characterization of copper interconnects with end-of-roadmap feature sizes. Sol. State Electron 47, 1233–1236 (2003)CrossRefGoogle Scholar
  52. 52.
    Sondheimer, E.H.: The mean free path of electrons in metals. Adv. Phys. 1, 1–42 (1952) CrossRefGoogle Scholar
  53. 53.
    Steinhögl, W., Schindler, G., Steinlesberger, G., Engelhardt, M.: Size-dependent resistivity of metallic wires in the mesoscopic range. Phys. Rev. B 66(1–4), 075414 (2002)Google Scholar
  54. 54.
    Steinhögl, W., Schindler, G., Steinlesberger, G., Traving, M., Engelhardt, M.: Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller. J. Appl. Phys. 97(1–7), 023706 (2005)Google Scholar
  55. 55.
    Steinlesberger, G., Engelhardt, M., Schindler, G., Steinhögl, W., von Glasow, A., Mosig, K., Bertagnolli, E.: Electrical assessment of copper damascene interconnects down to sub-50 nm feature sizes. Microelectron. Eng. 64, 409–416 (2002)CrossRefGoogle Scholar
  56. 56.
    Steinlesberger, G., Engelhardt, M., Schindler, G., Kretz, J., Steinhögl, W., Bertagnolli, E.: Processing technology for the investigation of sub-50 nm copper damascene interconnects. Sol. State Electron 47, 1237–1241 (2003)CrossRefGoogle Scholar
  57. 57.
    Tabib-Azar, M., Akiwande, D.: Real-time imaging of semiconductor space-charge regions using high-spatial resolution evanescent microwave microscope. Rev. Sci. Instrum. 71, 1460–1465 (2000)CrossRefGoogle Scholar
  58. 58.
    Toimil-Molares, M.E., Höhberger, E.M., Schaeflein, C., Blick, R.H., Neumann, R., Trautmann, C.: Electrical characterization of electrochemically grown single copper nanowires. Appl. Phys. Lett. 82, 2139–2141 (2003)CrossRefGoogle Scholar
  59. 59.
    Vazquez-Mena, O., Villanueva, G., Savu, V., Sidler, K., van den Boogaart, M.A.F., Brugger, J.: Metallic nanowires by full wafer stencil lithography. Nano Lett. 8, 3675–3682 (2008)CrossRefGoogle Scholar
  60. 60.
    White, A.E., Tinkham, M., Skocpol, W.J., Flanders, D.C.: Evidence for interaction effects in the low-temperature resistance rise in ultrathin metallic wires. Phys. Rev. Lett. 48, 1752–1755 (1982)CrossRefGoogle Scholar
  61. 61.
    Williams, W.D., Giordano, N.: Experimental study of localization and electron-electron interaction effects in thin Au wires. Phys. Rev. B 33(12), 8146–8154 (1986)CrossRefGoogle Scholar
  62. 62.
    Wu, W., Brongersma, S.H., Van Hove, M., Maex, K.: Influence of surface and grain-boundary scattering on the resistivity of copper in reduced dimensions. Appl. Phys. Lett. 84, 2838–2840 (2004)CrossRefGoogle Scholar
  63. 63.
    Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., LaBean, T.H.: DNA-templated self-assembly of protein arrays and highly conductivity nanowires. Science 301, 1882–1884 (2003)CrossRefGoogle Scholar
  64. 64.
    Zhang, L., Ju, Y., Hosoi, A., Fujimoto, A.: Microwave AFM imaging for the measurement of electrical properties on the nanometer scale (2010) (to be submitted)Google Scholar
  65. 65.
    Zhang, W., Brongersma. S.H., Li, Z., Li, D., Richard, O., Maex, K.: Analysis of the size effect in electroplated fine copper wires and a realistic assessment to model copper resistivity. J. Appl. Phys. 101(1–11), 063703 (2007)Google Scholar
  66. 66.
    Zhang, Z.B., Sun, X.Z., Dresselhaus, M.S., Ying, J.Y., Heremans, J.: Electronic transport properties of single-crystal bismuth nanowire arrays. Phys. Rev. B 61, 4850–4861 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Mechanical Science and EngineeringNagoya UniversityNagoyaJapan

Personalised recommendations