Advertisement

Evaluation of Mechanical Properties

  • Mikio MuraokaEmail author
  • Hironori Tohmyoh
Chapter
  • 1.1k Downloads
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Mechanical properties such as elastic modulus, fracture stress, and yield stress of nano/micromaterials are fundamental data for practical design of nano/micromaterial-based devices. These properties generally differ from those of bulk material because of size effects. This chapter is devoted to an introduction of some techniques for evaluating the mechanical properties of nanowires and thin wires. In order to clarify the advantages of the techniques that we introduce, the first section gives an overview of typical techniques reported so far. In the subsequent sections, we take up atomic force acoustic microscopy using a concentrated-mass cantilever and a bending method based on the geometrically nonlinear problem on the bent shape, i.e., elastica, for evaluating elastic modulus and bending strength of brittle nanowires. Finally, evaluation of elastic–plastic properties of metallic thin wires is demonstrated by means of unsymmetrical, small-span bending test.

Keywords

Atomic Force Microscopy Resonant Frequency Contact Stiffness Flexural Rigidity Atomic Force Microscopy Cantilever 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

M.Muraoka. acknowledges partial support from the Japan Society for the Promotion of Science (JSPS), through the Grant-in-Aid for Scientific Research (B) Grant No. 20360049 and Ms. Y. Ishigami and K. Kanazawa for their help in preparing the manuscript. H.Tohmyoh. acknowledges partial support from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan under Grant-in-Aid for Young Scientists (A) Grant No. 21686012 and Dr. M.A.S. Akanda for his thankful discussion in preparing the manuscript.

References

  1. 1.
    Akanda, M.A.S., Tohmyoh, H., Saka, M.: An integrated compact unit for wide range micro-newton force measurement. J. Solid Mech. Mater. Eng. 4, 545–556 (2010)CrossRefGoogle Scholar
  2. 2.
    Akita, S., Nishijima, H., Kishida, T., Nakayama, Y.: Influence of force acting on side face of carbon nanotube in atomic force microscopy. Jpn. J. Appl. Phys. 39, 3724–3727 (2000)CrossRefGoogle Scholar
  3. 3.
    ASM International: Metals Handbook, 10th edn, vol. 2, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. Materials Park, OH (1990)Google Scholar
  4. 4.
    Bai, X.D., Gao, P.X., Wang, Z.L.: Dual-mode mechanical resonance of individual ZnO nanobelts. Appl. Phys. Lett. 82, 4806–4808 (2003)CrossRefGoogle Scholar
  5. 5.
    Binnig, G., Quate, C.F., Gerber, C.: Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986)CrossRefGoogle Scholar
  6. 6.
    Binnig, G., Rohrer, H.: Scanning tunneling microscopy. Helv. Phys. Acta. 55, 726–735 (1982)Google Scholar
  7. 7.
    Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley, New York (1983)Google Scholar
  8. 8.
    Bowman, F.: Introduction to Elliptic Functions with Applications. Dover, New York (1961)zbMATHGoogle Scholar
  9. 9.
    Broughton, J.Q., Meli, C.A., Vashishta, P., Kalia, R.K.: Direct atomistic simulation of quartz crystal oscillators: bulk properties and nanoscale devices. Phys. Rev. B 56, 611–618 (1997)CrossRefGoogle Scholar
  10. 10.
    Burnham, N.A., Gremaud, G., Kulik, A.J., Gallo, P.-J., Oulevey, F.: Materials’ properties measurements: choosing the optimal scanning probe microscope configuration. J. Vac. Sci. Technol. B 14, 1308–1312 (1996)CrossRefGoogle Scholar
  11. 11.
    Cammarata, R.C.: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46, 1–38 (1994)CrossRefGoogle Scholar
  12. 12.
    Chen, C.Q., Shi, Y., Zhang, Y.S., Zhu, J., Yan, Y.J.: Size dependence of Young’s modulus in ZnO nanowires. Phys. Rev. Lett. 96, 075505(1–4) (2006)Google Scholar
  13. 13.
    Cuenot, S., Frétigny, C., Demoustier-Champagne, S., Nysten, B.: Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B 69, 165410(1–5) (2004)Google Scholar
  14. 14.
    Gao, R., Wang, Z.L., Bai, Z., de Heer, W.A., Dai, L., Gao, M.: Nanomechanics of individual carbon nanotubes from pyrolytically grown arrays. Phys. Rev. Lett. 85, 622–625 (2000)CrossRefGoogle Scholar
  15. 15.
    Giessibl, F.J.: Atomic resolution of the silicon (111)-(7 × 7) surface by atomic force microscopy. Science 267, 68–71 (1995)CrossRefGoogle Scholar
  16. 16.
    Gilman, J.J.: Cleavage, ductile, and tenacity in crystals. In: Averbach, B.L., Felbeck, D.K., Hahn, G.T., Thomas, D.A. (eds.) Fracture. Technology Press of MIT, Cambridge (1959)Google Scholar
  17. 17.
    Hoffmann, S., Utke, I., Moser, B., Michler, J., Christiansen, S.H., Schmidt, V., Senz, S., Werner, P., Gösele, U., Ballif, C.: Measurement of the bending strength of vapor-liquid-solid grown silicon nanowires. Nano Lett. 6, 622–625 (2006)CrossRefGoogle Scholar
  18. 18.
    Hoffmann, S., Östlund, F., Michler, J., Fan, H.J., Zacharias, M., Christiansen, S.H., Ballif, C.: Fracture strength and Young’s modulus of ZnO nanowires. Nanotechnology 18, 205503–205507 (2007)CrossRefGoogle Scholar
  19. 19.
    Hoummady, M., Farnault, E.: Enhanced sensitivity to force gradients by using higher flexural modes of the atomic force microscope cantilever. Appl. Phys. A 66, S361–S364 (1998)CrossRefGoogle Scholar
  20. 20.
    Jiang, X., Herricks, T., Xia, Y.: CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett. 2, 1333–1338 (2002)CrossRefGoogle Scholar
  21. 21.
    Kis, A., Mihailovic, D., Remskar, M., Mrzel, A., Jesih, A., Piwonski, I., Kulik, A.J., Benoit, W., Forró, L.: Shear and Young’s moduli of MoS2 nanotube ropes. Adv. Mater. 15, 733–736 (2003)CrossRefGoogle Scholar
  22. 22.
    Kolosov, O., Yamanaka, K.: Nonlinear detection of ultrasonic vibrations in an atomic force microscope. Jpn. J. Appl. Phys. 32, L1095–L1098 (1993)CrossRefGoogle Scholar
  23. 23.
    Kulkarni, A.J., Zhou, M., Ke, F.J.: Orientation and size dependence of the elastic properties of zinc oxide nanobelts. Nanotechnology 16, 2749–2756 (2005)CrossRefGoogle Scholar
  24. 24.
    Li, X.D., Gao, H.S., Murphy, C.J., Caswell, K.K.: Nanoindentation of silver nanowires. Nano Lett. 3, 1495–1498 (2003)CrossRefGoogle Scholar
  25. 25.
    Li, X., Ono, T., Wang, Y., Esashi, M.: Ultrathin single-crystalline cantilever resonators: fabrication technology and significant specimen size effect on Young’s modulus. Appl. Phys. Lett. 83, 3081–3083 (2003)CrossRefGoogle Scholar
  26. 26.
    Li, X., Wang, X., Xiong, Q., Eklund, P.C.: Mechanical properties of ZnS nanobelts. Nano Lett. 5, 1982–1986 (2005)CrossRefGoogle Scholar
  27. 27.
    Liang, H., Upmanyu, M., Huang, H.: Size-dependent elasticity of nanowires: nonlinear effects. Phys. Rev. B 71, 241403(1–4) (2005)Google Scholar
  28. 28.
    Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 2nd edn. Cambridge University, Cambridge (1906)Google Scholar
  29. 29.
    Maivald, P., Butt, H.J., Gould, S.A.C., Prater, C.B., Drake, B., Gurley, J.A., Elings, V.B., Hansma, P.K.: Using force modulation to image surface elasticities with the atomic force microscope. Nanotechnology 2, 103–106 (1991)CrossRefGoogle Scholar
  30. 30.
    Marrian, C.R.K.: Technology of proximal probe lithography. SPIE Optical Engineering, Bellingham (1993)Google Scholar
  31. 31.
    Martin, Y., Wickramasinghe, H.: Magnetic imaging by ‘force microscopy’ with 1000 Å resolution. Appl. Phys. Lett. 50, 1455–1457 (1987)CrossRefGoogle Scholar
  32. 32.
    Mate, C.M., McClelland, G.M., Erlandsson, R., Chiang, S.: Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59, 1942–1945 (1987)CrossRefGoogle Scholar
  33. 33.
    Miao, W.G., Wu, Y., Zhou, H.P.: Morphologies and growth mechanisms of aluminium nitride whiskers. J. Mater. Sci. 32, 1969–1975 (1997)CrossRefGoogle Scholar
  34. 34.
    Miller, R.M., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)CrossRefGoogle Scholar
  35. 35.
    Motoyama, M., Fukunaka, Y., Sakka, T., Ogata, Y.H., Kikuchi, S.: Electrochemical processing of Cu and Ni nanowire arrays. J. Electroanal. Chem. 584, 84–91 (2005)CrossRefGoogle Scholar
  36. 36.
    Muraoka, M.: Sensitive detection of local elasticity by oscillating an AFM cantilever with its mass concentrated. JSME Int. J. A 45, 567–572 (2002)CrossRefGoogle Scholar
  37. 37.
    Muraoka, M.: Sensitivity-enhanced atomic force acoustic microscopy with concentrated-mass cantilevers. Nanotechnology 16, 542–550 (2005)CrossRefGoogle Scholar
  38. 38.
    Muraoka, M., Arnold, W.: A method of evaluating local elasticity and adhesion energy from the nonlinear response of AFM cantilever vibrations. JSME Int. J. A 44, 396–405 (2001)CrossRefGoogle Scholar
  39. 39.
    Muraoka, M., Tobe, R.: Mechanical characterization of nanowires based on optical diffraction images of the bent shape. J. Nanosci. Nanotechnol. 9, 4566–4574 (2009)CrossRefGoogle Scholar
  40. 40.
    Nam, C.-Y., Jaroenapibal, P., Tham, D., Luzzi, D.E., Evoy, S., Fischer, J.E.: Diameter-dependent electromechanical properties of GaN nanowires. Nano Lett. 6, 153–158 (2006)CrossRefGoogle Scholar
  41. 41.
    Namazu, T., Isono, Y., Tanaka, T.: Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM. J. Microelectromech. Syst. 9, 450–459 (2000)CrossRefGoogle Scholar
  42. 42.
    Nilsson, S.G., Borrisé, X., Montelius, L.: Size effect on Young’s modulus of thin chromium cantilevers. Appl. Phys. Lett. 85, 3555–3557 (2004)CrossRefGoogle Scholar
  43. 43.
    Okada, S., Mukawa, T., Kobayashi, R., Ishida, M., Ochiai, Y., Kaito, T., Matsui, S., Fujita, J.: Comparison of Young’s modulus dependency on beam accelerating voltage between electron-beam- and focused ion-beam-induced chemical vapor deposition pillars. Jpn. J. Appl. Phys. 45, 5556–5559 (2006)CrossRefGoogle Scholar
  44. 44.
    Poncharal, P., Wang, Z.L., Ugarte, D., de Heer, W.A.: Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513–1516 (1999)CrossRefGoogle Scholar
  45. 45.
    Rabe, U., Arnold, W.: Acoustic microscopy by atomic force microscopy. Appl. Phys. Lett. 64, 1493–1495 (1994)CrossRefGoogle Scholar
  46. 46.
    Rabe, U., Janser, K., Arnold, W.: Vibrations of free and surface-coupled atomic force microscope cantilevers: theory and experiment. Rev. Sci. Instrum. 67, 3281–3293 (1996)CrossRefGoogle Scholar
  47. 47.
    Rabe, U., Kester, E., Arnold, W.: Probing linear and non-linear tip-sample interaction forces by atomic force acoustic microscopy. Surf. Interface Anal. 27, 386–391 (1999)CrossRefGoogle Scholar
  48. 48.
    Rogers, B., Pennathur, S., Adams, J.: Nanotechnology: Understanding Small Systems. Taylor & Francis, Boca Raton (2008)zbMATHGoogle Scholar
  49. 49.
    Sacharoff, A.C., Westervelt, R.M.: Physical properties of ultrathin drawn Pt wires. Phys. Rev. B 29, 6411–6418 (1984)CrossRefGoogle Scholar
  50. 50.
    Saka, M., Yamaya, F., Tohmyoh, H.: Rapid and mass growth of stress-induced nanowhiskers on the surfaces of evaporated polycrystalline Cu films. Scr. Mater. 56, 1031–1034 (2007)CrossRefGoogle Scholar
  51. 51.
    Salvetat, J.-P., Briggs, G.A.D., Bonard, J.-M., Bacsa, R.R., Kulik, A.J., Stöckli, T., Burnham, N.A., Forró, L.: Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82, 944–947 (1999)CrossRefGoogle Scholar
  52. 52.
    Salvetat, J.-P., Kulik, A.J., Bonard, J.-M., Briggs, G.A.D., Stöckli, T., Méténier, K., Bonnamy, S., Béguin, F., Burnham, N.A., Forró, L.: Elastic modulus of ordered and disordered multiwalled carbon nanotubes. Adv. Mater. 11, 161–165 (1999)CrossRefGoogle Scholar
  53. 53.
    Sarid, D.: Scanning Force Microscopy with Applications to Electric, Magnetic and Atomic Forces. Oxford University, New York (1994)Google Scholar
  54. 54.
    Segall, D.E., Ismail-Beigi, S., Arias, T.A.: Elasticity of nanometer-sized objects. Phys. Rev. B 65, 214109(1–10) (2002)Google Scholar
  55. 55.
    Sharma, P., Ganti, S., Bhate, N.: Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82, 535–537 (2003)CrossRefGoogle Scholar
  56. 56.
    Shenoy, V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B 71, 094104(1–11) (2005)Google Scholar
  57. 57.
    Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Song, J., Wang, X., Riedo, E., Wang, Z.L.: Elastic property of vertically aligned nanowires. Nano Lett. 5, 1954–1958 (2005)CrossRefGoogle Scholar
  59. 59.
    Stern, J.E., Terris, B.D., Mamin, H.J., Rugar, D.: Deposition and imaging of localized charge on insulator surfaces using a force microscope. Appl. Phys. Lett. 53, 2717–2719 (1988)CrossRefGoogle Scholar
  60. 60.
    Sun, C.Q., Tay, B.K., Zeng, X.T., Li, S., Chen, T.P., Zhou, J., Bai, H.L., Jiang, E.Y.: Bond-order-length-bond-strength (bond-OLS) correlation mechanism for the shape-and-size dependent of nanosolid. J. Phys. Condens. Mater. 14, 7781–7795 (2002)CrossRefGoogle Scholar
  61. 61.
    Tan, E.P.S., Zhu, Y., Yu, T., Dai, L., Sow, C.H., Tan, V.B.C., Lim, C.T.: Crystallinity and surface effects on Young’s modulus of CuO nanowires. Appl. Phys. Lett. 90, 163112(1–3) (2007)Google Scholar
  62. 62.
    Timoshenko, P.S., Young, D.H.: Elements of Strength of Materials, 5th edn. Van Nostrand, Tokyo (1981)Google Scholar
  63. 63.
    Timoshenko, P.S., Young, D.H., Weaver, W. Jr.: Vibration Problems in Engineering, 4th edn. Wiley, New York (1974)Google Scholar
  64. 64.
    Tohmyoh, H., Imaizumi, T., Hayashi, H., Saka, M.: Welding of Pt nanowires by Joule heating. Scr. Mater. 57, 953–956 (2007)CrossRefGoogle Scholar
  65. 65.
    Tohmyoh, H., Yamanobe, K., Saka, M., Utsunomiya, J., Nakamura, T., Nakano, Y.: Analysis of solderless press-fit interconnections during the assembly process. ASME J. Electron. Packag. 130, 031007(1–6) (2008)Google Scholar
  66. 66.
    Tohmyoh, H., Akanda, M.A.S., Saka, M.: Small-span bending test for determination of elastic–plastic properties of ultrathin Pt wires. Appl. Phys. A (in press)Google Scholar
  67. 67.
    Tombler, T.W., Zhou, C., Alexseyev, L., Kong, J., Dai, H., Liu, L., Jayanthi, C.S., Tang, M., Wu, S.Y.: Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 405, 769–772 (2000)CrossRefGoogle Scholar
  68. 68.
    Treacy, M.M., Ebbesen, T.W., Gibson, J.M.: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996)CrossRefGoogle Scholar
  69. 69.
    Vairac, P., Cretin, B.: Scanning microdeformation microscopy in reflection mode. Appl. Phys. Lett. 68, 461–463 (1996)CrossRefGoogle Scholar
  70. 70.
    Walters, D.A., Ericson, L.M., Casavant, M.J., Liu, J., Colbert, D.T., Smith, K.A., Smalley, R.E.: Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl. Phys. Lett. 74, 3803–3805 (1999)CrossRefGoogle Scholar
  71. 71.
    Wiesendanger, R.: Scanning Probe Microscopy and Spectroscopy. Cambridge University, Cambridge (1994).CrossRefGoogle Scholar
  72. 72.
    Wolfram, S.: The Mathematica Book, 3rd edn. Wolfram Media and Cambridge University, Cambridge (1996)Google Scholar
  73. 73.
    Wong, E.W., Sheehan, P.E., Lieber, C.M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997)CrossRefGoogle Scholar
  74. 74.
    Wu, B., Heidelberg, A., Boland, J.J.: Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 4, 525–529 (2005)CrossRefGoogle Scholar
  75. 75.
    Xiong, Q., Duarte, N., Tadigadapa, S., Eklund, P.C.: Force-deflection spectroscopy: a new method to determine the Young’s modulus of nanofilaments. Nano Lett. 6, 1904–1909 (2006)CrossRefGoogle Scholar
  76. 76.
    Yamanaka, K., Nakano, S.: Ultrasonic atomic force microscope with overtone excitation of cantilever. Jpn. J. Appl. Phys. 35, 3787–3792 (1996)CrossRefGoogle Scholar
  77. 77.
    Yamanaka, K., Noguchi, A., Tsuji, T., Koike, T., Goto, T.: Quantitative material characterization by ultrasonic AFM. Surf. Interface Anal. 27, 600–606 (1999)CrossRefGoogle Scholar
  78. 78.
    Yu, M.-F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., Ruoff, R.S.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640 (2000)CrossRefGoogle Scholar
  79. 79.
    Yu, T., Zhao, X., Shen, Z.X., Wu, Y.H., Su, W.H.: Investigation of individual CuO nanorods by polarized micro-Raman scattering. J. Cryst. Growth 268, 590–595 (2004)CrossRefGoogle Scholar
  80. 80.
    Zhong, Q., Inniss, D., Kjoller, K., Elings, V.B.: Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf. Sci. Lett. 290, L688–L692 (1993)CrossRefGoogle Scholar
  81. 81.
    Zhou, L.G., Huang, H.: Are surfaces elastically softer or stiffer? Appl. Phys. Lett. 84,1940–1942 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringAkita UniversityAkitaJapan
  2. 2.Department of NanomechanicsTohoku UniversitySendaiJapan

Personalised recommendations