Advertisement

Fabrication of Micro and Nano Metallic Materials

  • Masumi SakaEmail author
  • Kazuhiko Sasagawa
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Convenience of application and controllability are obvious requirements for engineering methodologies that are intended for use in the fabrication of micro and nano metallic materials. In order to meet these requirements, fabrication techniques based on atomic diffusion that utilize protective layers over the specimens have been trialed. Various EM-based approaches are introduced first. Attempts to collect metallic atoms by the utilization of temperature gradients in passivated specimens and by improvements to the structures of the specimens are discussed, and the fabrication of Al wires, spheres and belts with micro/nano sized dimensions are shown. In addition, the effect of the purity of the source materials on the fabrication and the effect of temperature on the selective production of various shapes of micro/nano materials are mentioned. Numerical simulations of formation of micro/nano materials are explained and are verified as being useful tools when investigating conditions for efficient fabrication. Next, some approaches are introduced that involve SM-based methods. The rapid and mass formation of Cu nanowires and the fabrication of Ag micro materials, which can be realized by covering the specimen with a protective layer, are described.

Keywords

Passivation Layer Atomic Density Atomic Diffusion Atomic Flux Field Emission Scanning Electron Microscopy Micrographs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

M. S. wishes to express his thanks to X. Zhao for his kind help in preparing the manuscript.

References

  1. 1.
    Baker, S.P., Joo, Y.-C., Knauβ, M.P., Arzt, E.: Electromigration damage in mechanically de-formed Al conductor lines: dislocations as fast diffusion paths. Acta. Mater. 48, 2199–2208 (2000)CrossRefGoogle Scholar
  2. 2.
    Barea, L.A.M., von Zuben, A.A.G., Márquez, A.Z., Frateschi, N.C.: GaN nano- and micro-spheres fabricated selectively on silicon. J. Cryst. Growth 308, 37–40 (2007)CrossRefGoogle Scholar
  3. 3.
    Bica, I.: Pore formation in iron micro-spheres by plasma procedure. Mater. Sci. Eng A 393, 191–195 (2005)CrossRefGoogle Scholar
  4. 4.
    Blech, I.A.: Electromigration in thin aluminum films on titanium nitride. J. Appl. Phys. 47, 1203–1208 (1976)CrossRefGoogle Scholar
  5. 5.
    Cao, L., Li, M.K., Yang, Z., Wei, Q., Zhang, W.: Synthesis and characterization of dentate-shaped β-Ga2O3 nano/microbelts via a simple method. Appl. Phys. A Mater. Sci. Process. 91, 415–419 (2008)CrossRefGoogle Scholar
  6. 6.
    Chang, C.Y., Vook, R.W.: The effect of surface aluminum oxide films on thermally induced hillock formation. Thin Solid Films 228, 205–209 (1993)CrossRefGoogle Scholar
  7. 7.
    Chen, K., Wilcox, G.D.: Observations of the spontaneous growth of tin whiskers on tin-manganese alloy electrodeposits. Phys. Rev. Lett. 94, 066104(1–4) (2005)Google Scholar
  8. 8.
    Chuang, T.H., Lin, H.J., Chi, C.C.: Rapid growth of tin whiskers on the surface of Sn-6.6Lu alloy. Scr. Mater. 56, 45–48 (2007)CrossRefGoogle Scholar
  9. 9.
    Coffer, J.L., Bigham, S.R., Pinizzotto, R.F., Yang, H.: Characterization of quantum-confined CdS nanocrystallites stabilized by deoxyribonucleic acid (DNA). Nanotechnology 3, 69–76 (1992)CrossRefGoogle Scholar
  10. 10.
    Ellis, W.C., Gibbons, D.F., Treuting, R.C.: In: Doremus, R.H., Roberts, B.W., Turnbull, D. (eds.) Growth and perfection of crystals. Wiley, New York (1958)Google Scholar
  11. 11.
    Eshelby, J.D.: A tentative theory of metallic whisker growth. Phys. Rev. 91, 755–756 (1953)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Furuta, N., Hamamura, K.: Growth mechanism of proper tin-whisker. Jpn. J. Appl. Phys. 8, 1404–1410 (1969)CrossRefGoogle Scholar
  13. 13.
    Hasegawa, M., Sasagawa, K., Uno, S., Saka, M., Abé, H.: Derivation of film characteristic constants of polycrystalline line for reliability evaluation against electromigration failure. Mech. Mater. 41, 1090–1095 (2009)CrossRefGoogle Scholar
  14. 14.
    Huntington, H.B., Grone, A.R.: Current-induced marker motion in gold wires. J. Phys. Chem. Solids 20, 76–87 (1961)CrossRefGoogle Scholar
  15. 15.
    Kononenko, O.V., Ivanov, E.D., Matveev, V.N., Khodos, I.I.: Electromigration activation energy in pure aluminum films deposited by partially ionized beam technique. Scr. Metall. Mater. 33, 1981–1986 (1995)CrossRefGoogle Scholar
  16. 16.
    Korhonen, M.A., Børgesen, P., Tu, K.N., Li, C.-Y.: Stress evolution due to electromigration in confined metal lines. J. Appl. Phys. 73, 3790–3799 (1993)CrossRefGoogle Scholar
  17. 17.
    Lau, J.H., Pan, S.H.: 3D nonlinear stress analysis of tin whisker initiation on lead-free components. Trans. ASME J. Electron. Packag. 125, 621–629 (2003)CrossRefGoogle Scholar
  18. 18.
    Lee, B.-Z., Lee, D.N.: Spontaneous growth mechanism of tin whiskers. Acta Mater. 46, 3701–3714 (1998)CrossRefGoogle Scholar
  19. 19.
    Lloyd, J.R., Smith, P.M., Prokop, G.S.: The role of metal and passivation defects in electromigration-induced damage in thin film conductors. Thin Solid Films 93, 385–395 (1982)CrossRefGoogle Scholar
  20. 20.
    Lu, Y., Saka, M.: Effect of purity on the fabrication of Al micro/thin-materials by utilizing electromigration. Mater. Lett. 63, 2294–2296 (2009)CrossRefGoogle Scholar
  21. 21.
    Lu, Y., Saka, M.: Fabrication of Al micro-belts by utilizing electromigration. Mater. Lett. 63, 2227–2229 (2009)CrossRefGoogle Scholar
  22. 22.
    Mayr, T., Moser, C., Klimant, I.: Luminescence decay time encoding of magnetic micro spheres for multiplexed analysis. Anal. Chim. Acta 597, 137–144 (2007)CrossRefGoogle Scholar
  23. 23.
    Miyamoto, H., Shiratori, M., Miyoshi, T., Oto, M.: Interpretation of mechanical properties of metals in terms of microstructure. Bull. JSME 14, 893–900 (1971)Google Scholar
  24. 24.
    Pan, Z.W., Dai, Z.R., Wang, Z.L.: Nanobelts of semiconducting oxides. Science 291, 1947–1949 (2001)CrossRefGoogle Scholar
  25. 25.
    Park, Y.J., Thompson, C.V.: The effects of the stress dependence of atomic diffusivity on stress evolution due to electromigration. J. Appl. Phys. 82, 4277–4281 (1997)CrossRefGoogle Scholar
  26. 26.
    Qiu, J., Li, Y., Wang, Y., Liang, C., Wang, T., Wang, D.: A novel form of carbon micro-balls from coal. Carbon 41, 767–772 (2003)CrossRefGoogle Scholar
  27. 27.
    Sacilotti, M., Cheyssac, P., Patriarche, G., Decobert, J., Chiaramonte, Th., Cardoso, L.P., Pillis, M.F., Brasil, M.J., Iikawa, F., Nakaema, M., Lacroute, Y., Vial, J.C., Donatini, F.: Organometallic precursors as catalyst to grow three-dimensional micro/nanostructures: spheres, clusters & wires. Surf. Coat. Technol. 201, 9104–9108 (2007)CrossRefGoogle Scholar
  28. 28.
    Saka, M., Nakanishi, R.: Fabrication of Al thin wire by utilizing controlled accumulation of atoms due to electromigration. Mater. Lett. 60, 2129–2131 (2006)CrossRefGoogle Scholar
  29. 29.
    Saka, M., Ueda, R.: Formation of metallic nanowires by utilizing electromigration. J. Mater. Res. 20, 2712–2718 (2005)CrossRefGoogle Scholar
  30. 30.
    Saka, M., Yamaya, F., Tohmyoh, H.: Rapid and mass growth of stress-induced nanowhiskers on the surfaces of evaporated polycrystalline Cu films. Scr. Mater. 56, 1031–1034 (2007)CrossRefGoogle Scholar
  31. 31.
    Saka, M., Kato, K., Tohmyoh, H., Sun, Y.: Controlling electromigration to selectively form thin metal wires and metal microspheres. J. Mater. Res. 23, 3122–3128 (2008)CrossRefGoogle Scholar
  32. 32.
    Saka, M., Yasuda, M., Tohmyoh, H., Settsu, N.: Fabrication of Ag micromaterials by utilizing stress-induced migration. In: Proceedings of the 2nd Electronics Systemintegration Technology Conference, vol. 1, pp. 507–510 (2008)Google Scholar
  33. 33.
    Sasagawa, K., Nakamura, N., Saka, M., Abé, H.: A new approach to calculate atomic flux di-vergence by electromigration. Trans. ASME J. Electron. Packag. 120, 360–366 (1998)CrossRefGoogle Scholar
  34. 34.
    Sasagawa, K., Hasegawa, M., Saka, M., Abé, H.: Governing parameter for electromigration damage in the polycrystalline line covered with a passivation layer. J. Appl. Phys. 91, 1882–1890 (2002)CrossRefGoogle Scholar
  35. 35.
    Sasagawa, K., Hasegawa, M., Saka, M., Abé, H.: Prediction of electromigration failure in passivated polycrystalline line. J. Appl. Phys. 91, 9005–9014 (2002)CrossRefGoogle Scholar
  36. 36.
    Sasagawa, K., Hasegawa, M., Yoshida, N., Saka, M., Abé, H.: Prediction of electromigration failure in passivated polycrystalline line considering passivation thickness. In: Proceedings of the ASME InterPACK ‘03(CD-ROM): InterPack2003-35065 (2003)Google Scholar
  37. 37.
    Sasagawa, K., Fukushi, S., Sun, Y., Saka, M.: A numerical simulation of nanostructure formation utilizing electromigration. J. Electron. Mater. 38, 2201–2206 (2009)CrossRefGoogle Scholar
  38. 38.
    Sasagawa, K., Kirita, A., Fukushi, S., Saka, M.: Simulation of nanostructure production by electromigration considering specimen’s shape. J. Nanosci. Nanotechnol. 10, 6036–6040 (2010)CrossRefGoogle Scholar
  39. 39.
    Sheng, G.T.T., Hu, C.F., Choi, W.J., Tu, K.N., Bong, Y.Y., Nguyen, L.: Tin whiskers studied by focused ion beam imaging and transmission electron microscopy. J. Appl. Phys. 92, 64–69 (2002)CrossRefGoogle Scholar
  40. 40.
    Shi, Y., Chen, J., Shen, P.: ZnS micro-spheres and flowers: chemically controlled synthesis and template use in fabricating MS(shell)/ZnS(core) and MS (M = Pb, Cu) hollow micro-spheres. J. Alloys Compd. 441, 337–343 (2007)CrossRefGoogle Scholar
  41. 41.
    Slówko, W., Prasol, H.: Micro-sphere plate as an electron detector at low vacuum. Vacuum 67, 191–198 (2002)CrossRefGoogle Scholar
  42. 42.
    Song, D., Yi, W.B.: Polymethyl methacrylate micro-spheres supported palladium: a new catalyst for Heck and Suzuki reactions. J. Mol. Catal. A Chem. 280, 20–23 (2008)CrossRefGoogle Scholar
  43. 43.
    Sun, Y., Tohmyoh, H., Saka, M.: Fabrication of Al microspheres by utilizing electromigration. J. Nanosci. Nanotechnol. 9, 1972–1975 (2009)CrossRefGoogle Scholar
  44. 44.
    Tan, C.M., Roy, A.: Investigation of the effect of temperature and stress gradients on accelerated EM test for Cu narrow interconnects. Thin Solid Films 504, 288–293 (2006)CrossRefGoogle Scholar
  45. 45.
    Tegtmeyer, D., Vorlaender, O., Zeyen, W., Tysoe, C., Silberkuhl, F.: New micro-sphere application in the leather industry. J. Am. Leather Chem. Assoc. 102, 288–292 (2007)Google Scholar
  46. 46.
    Tu, K.N.: Irreversible processes of spontaneous whisker growth in bimetallic Cu-Sn thin-film reactions. Phys. Rev. B 49, 2030–2034 (1994)CrossRefGoogle Scholar
  47. 47.
    Tu, K.N.: Recent advances on electromigration in very-large-scale-integration of interconnects. J. Appl. Phys. 94, 5451–5473 (2003)CrossRefGoogle Scholar
  48. 48.
    Tu, K.N., Li, J.C.M.: Spontaneous whisker growth on lead-free solder finishes. Mater. Sci. Eng. A 409, 131–139 (2005)CrossRefGoogle Scholar
  49. 49.
    Wang, Q., Cao, F., Chen, Q., Chen, C.: Preparation of carbon micro-spheres by hydrothermal treatment of methylcellulose sol. Mater. Lett. 59, 3738–3741 (2005)CrossRefGoogle Scholar
  50. 50.
    Yang, J., Lin, H., He, Q., Ling, L., Zhu, C., Bai, F.: Composition of hyperbranched conjugated polymers with nanosized cadmium sulfide particles. Langmuir 17, 5978–5983 (2001)CrossRefGoogle Scholar
  51. 51.
    Zhang, X., Chen, Y., Jia, C., Zhou, Q., Su, Y., Peng, B., Yin, S., Xin, M.: Two-step solvothermal synthesis of α-MnS spheres: growth mechanism and characterization. Mater. Lett. 62, 125–127 (2008)CrossRefGoogle Scholar
  52. 52.
    Zhang, Z.Q., Jiang, C.B., Li, S.X., Mao, S.X.: Nucleation and growth of ZnO micro- and nano-belts during thermal evaporation. J. Cryst. Growth 277, 321–329 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of NanomechanicsTohoku UniversitySendaiJapan
  2. 2.Department of Intelligent Machines and System EngineeringHirosaki UniversityHirosakiJapan

Personalised recommendations