• Masumi SakaEmail author
Part of the Engineering Materials book series (ENG.MAT.)


With the advancement of science and technology, and in particular the development of micro and nano technologies, the ability to restructure and alter the properties of materials has been realized by enabling the control of molecules and atoms. Micro and nano technologies are set to improve many aspects of our lives, such as information, medicine, materials, and so on. The evolution of micro and nano technologies has drawn much attention due to potential applications in the fields of manufacturing and processing, e.g., the electronic microcircuit industry. Wide-ranging research has also been carried out in this area, which is now considered to be one of the most promising areas for technical advances in the future.

Since Feynman presented the famous talk “There’s Plenty of Room at the Bottom” in 1959, technologies that we can use to control atoms and molecules and to rearrange matter to suit our needs have experienced significant developments. Nanotechnology has ambitiously...


Joule Heating Composite Thin Film Whisker Formation Stress Migration Biaxial Compressive Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author wishes to express his thanks to Y. Lu and S. Ishikawa for their kind help in preparing the manuscript.


  1. 1.
    Cheng, Y.-T., Weiner, A.M., Wong, C.A., Balogh, M.P., Lukitsch, M.J.: Stress-induced growth of bismuth nanowires. Appl. Phys. Lett. 81, 3248–3250 (2002)CrossRefGoogle Scholar
  2. 2.
    Compton, K.G., Mendizza, A., Arnold, S.M.: Filamentary growths on metal surfaces—Whiskers. Corrosion 7, 327–334 (1951)Google Scholar
  3. 3.
    Dai, H.: Carbon nanotubes: synthesis, integration, and properties. Acc. Chem. Res. 35, 1035–1044 (2002)CrossRefGoogle Scholar
  4. 4.
    Devetta, L., Canu, P., Bertucco, A., Steiner, K., Qin, L.C., Iijima, S.: Structure and formation of raft-like bundles of single-walled helical carbon nanotubes produced by laser evaporation. Chem. Phys. Lett. 269, 65–71 (1997)CrossRefGoogle Scholar
  5. 5.
    Ebbesen, T.W., Ajayan, P.M.: Large-scale synthesis of carbon nanotubes. Nature 358, 220–222 (1992)CrossRefGoogle Scholar
  6. 6.
    Eshelby, J.D.: A tentative theory of metallic whisker growth. Phys. Rev. 91, 755–756 (1953)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Govindaraj, A., Deepak, F.L., Gunari, N.A., Rao, C.N.R.: Semiconductor nanorods: Cu, Zn, and Cd chalcogenides. Isr. J. Chem. 41, 23–30 (2001)CrossRefGoogle Scholar
  8. 8.
    Herring, C., Galt, J.K.: Elastic and plastic properties of very small metal specimens. Phys. Rev. 85, 1060–1061 (1952)CrossRefGoogle Scholar
  9. 9.
    Huang, M.H., Wu, Y., Feick, H., Tran, N., Weber, E., Yang, P.: Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 13, 113–116 (2001)CrossRefGoogle Scholar
  10. 10.
    Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRefGoogle Scholar
  11. 11.
    Jana, N.R., Gearheart, L., Murphy, C.J.: Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem. Commun. 617–618 (2001)Google Scholar
  12. 12.
    Kodambaka, S., Tersoff, J., Reuter, M.C., Ross, F.M.: Diameter-independent kinetics in the vapor-liquid-solid growth of Si nanowires. Phys. Rev. Lett. 96, 096105 (1–4) (2006)Google Scholar
  13. 13.
    Koonce, S.E., Arnold, S.M.: Growth of metal whiskers. J. Appl. Phys. 24, 365–366 (1953)CrossRefGoogle Scholar
  14. 14.
    Lee, B.-Z., Lee, D.N.: Spontaneous growth mechanism of tin whiskers. Acta Mater. 46, 3701–3714 (1998)CrossRefGoogle Scholar
  15. 15.
    Li, S.Y., Lee, C.Y., Tseng, T.Y.: Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor-liquid-solid process. J. Cryst. Growth 247, 357–362 (2003)CrossRefGoogle Scholar
  16. 16.
    Lu, Y., Saka, M.: Effect of purity on the fabrication of Al micro/thin-materials by utilizing electromigration. Mater. Lett. 63, 2294–2296 (2009)CrossRefGoogle Scholar
  17. 17.
    Lu, Y., Saka, M.: Fabrication of Al micro-belts by utilizing electromigration. Mater. Lett. 63, 2227–2229 (2009)CrossRefGoogle Scholar
  18. 18.
    Pan, Z.W., Dai, Z.R., Wang, Z.L.: Nanobelts of semiconducting oxides. Science 291, 1947–1949 (2001)CrossRefGoogle Scholar
  19. 19.
    Penner, R.M., Martin, C.R.: Controlling the morphology of electronically conductive polymers. J. Electrochem. Soc. 133, 2206–2207 (1986)CrossRefGoogle Scholar
  20. 20.
    Prokes, S.M., Arnold, S.: Stress-driven formation of Si nanowires. Appl. Phys. Lett. 86, 193105 (1–3) (2005)Google Scholar
  21. 21.
    Rao, C.N.R., Deepak, F.L., Gundiah, G., Govindaraj, A.: Inorganic nanowires. Prog. Solid State Chem. 31, 5–147 (2003)CrossRefGoogle Scholar
  22. 22.
    Rogers, B., Pennathur, S., Adams, J.: Nanotechnology: Understanding Small Systems. Taylor & Francis, Boca Raton (2008)zbMATHGoogle Scholar
  23. 23.
    Saka, M., Nakanishi, R.: Fabrication of Al thin wire by utilizing controlled accumulation of atoms due to electromigration. Mater. Lett. 60, 2129–2131 (2006)CrossRefGoogle Scholar
  24. 24.
    Saka, M., Ueda, R.: Formation of metallic nanowires by utilizing electromigration. J. Mater. Res. 20, 2712–2718 (2005)CrossRefGoogle Scholar
  25. 25.
    Saka, M., Yamaya, F., Tohmyoh, H.: Rapid and mass growth of stress-induced nanowhiskers on the surfaces of evaporated polycrystalline Cu films. Scr. Mater. 56, 1031–1034 (2007).CrossRefGoogle Scholar
  26. 26.
    Saka, M., Kato, K., Tohmyoh, H., Sun, Y.X.: Controlling electromigration to selectively form thin metal wires and metal microspheres. J. Mater. Res. 23, 3122–3128 (2008)CrossRefGoogle Scholar
  27. 27.
    Saka, M., Tohmyoh, H., Muraoka, M., Ju, Y., Sasagawa, K.: Formation of metallic micro/nanomaterials by utilizing migration phenomena and techniques for their applications. Mater. Sci. Forum 614, 3–9 (2009)CrossRefGoogle Scholar
  28. 28.
    Sears, G.W.: A growth mechanism for mercury whiskers. Acta Metall. 3, 361–366 (1955)CrossRefGoogle Scholar
  29. 29.
    Sheng, G.T.T., Hu, C.F., Choi, W.J., Tu, K.N., Bong, Y.Y., Nguyen, L.: Tin whiskers studied by focused ion beam imaging and transmission electron microscopy. J. Appl. Phys. 92, 64–69 (2002)CrossRefGoogle Scholar
  30. 30.
    Shim, W., Ham, J., Lee,K.-I., Jeung, W.Y., Johnson, M., Lee, W.: On-film formation of Bi nanowires with extraordinary electron mobility. Nano Lett. 9, 18–22 (2009)CrossRefGoogle Scholar
  31. 31.
    Spearing, S.M.: Materials issues in microelectromechanical systems (MEMS). Acta Mater. 48, 179–196 (2000)CrossRefGoogle Scholar
  32. 32.
    Sun, Y.X., Tohmyon, H., Saka, M.: Fabrication of Al micro-spheres by utilizing electromigration. J. Nanosci. Nanotechnol. 9, 1972–1975 (2009)CrossRefGoogle Scholar
  33. 33.
    Tohmyoh, H., Imaizumi, T., Hayashi, H., Saka, M.: Welding of Pt nanowires by Joule heating. Scr. Mater. 57, 953–956 (2007)CrossRefGoogle Scholar
  34. 34.
    Tu, K.N.: Recent advances on electromigration in very-large-scale-integration of interconnects. J. Appl. Phys. 94, 5451–5473 (2003)CrossRefGoogle Scholar
  35. 35.
    Wagner, R.S., Ellis, W.C.: Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964)CrossRefGoogle Scholar
  36. 36.
    Wu, Y., Yang, P.: Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 123, 3165–3166 (2001)CrossRefGoogle Scholar
  37. 37.
    Wu, Y., Yang, P.: Melting and welding semiconductor nanowires in nanotubes. Adv. Mater. 13, 520–523 (2001)CrossRefGoogle Scholar
  38. 38.
    Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., Yan, H.: One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003)CrossRefGoogle Scholar
  39. 39.
    Xu, S., Tian, M., Wang, G., Xu, J., Redwing, J.M., Chan, M.H.W.: Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam. Small 1, 1221–1229 (2005)CrossRefGoogle Scholar
  40. 40.
    Zeng, K., Tu, K.N.: Six cases of reliability study of Pb-free solder joints in electronic packaging technology. Mater. Sci. Eng. R 38, 55–105 (2002)CrossRefGoogle Scholar
  41. 41.
    Zheng, M., Zhang, L., Zhang, X., Zhang, J., Li, G.: Fabrication and optical absorption of ordered indium oxide nanowire arrays embedded in anodic alumina membranes. Chem. Phys. Lett. 334, 298–302 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of NanomechanicsTohoku UniversityAoba-ku, SendaiJapan

Personalised recommendations