Advertisement

A Systematic Approach to MDD-Based Constraint Programming

  • Samid Hoda
  • Willem-Jan van Hoeve
  • J. N. Hooker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6308)

Abstract

Fixed-width MDDs were introduced recently as a more refined alternative for the domain store to represent partial solutions to CSPs. In this work, we present a systematic approach to MDD-based constraint programming. First, we introduce a generic scheme for constraint propagation in MDDs. We show that all previously known propagation algorithms for MDDs can be expressed using this scheme. Moreover, we use the scheme to produce algorithms for a number of other constraints, including Among, Element, and unary resource constraints. Finally, we discuss an implementation of our MDD-based CP solver, and provide experimental evidence of the benefits of MDD-based constraint programming.

Keywords

Local Information Feasible Path Binary Constraint Nurse Rostering Individual Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A Constraint Store Based on Multivalued Decision Diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 118–132. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Cheng, K., Yap, R.: Maintaining Generalized Arc Consistency on Ad Hoc r-Ary Constraints. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 509–523. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Hadzic, T., Hooker, J.N., O’Sullivan, B., Tiedemann, P.: Approximate Compilation of Constraints into Multivalued Decision Diagrams. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 448–462. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Hadzic, T., Hooker, J.N., Tiedemann, P.: Propagating Separable Equalities in an MDD Store. In: Perron, L., Trick, M.A. (eds.) CPAIOR 2008. LNCS, vol. 5015, pp. 318–322. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Hadzic, T., O’Mahony, E., O’Sullivan, B., Sellmann, M.: Enhanced Inference for the Market Split Problem. In: Proceedings of ICTAI, pp. 716–723. IEEE, Los Alamitos (2009)Google Scholar
  6. 6.
    Hawkins, P., Lagoon, V., Stuckey, P.J.: Solving Set Constraint Satisfaction Problems Using ROBDDs. JAIR 24(1), 109–156 (2005)zbMATHGoogle Scholar
  7. 7.
    Hoda, S.: Essays on Equilibrium Computation, MDD-based Constraint Programming and Scheduling. PhD thesis, Carnegie Mellon University (2010)Google Scholar
  8. 8.
    van Hoeve, W.-J., Pesant, G., Rousseau, L.-M., Sabharwal, A.: New Filtering Algorithms for Combinations of Among Constraints. Constraints 14, 273–292 (2009)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Samid Hoda
    • 1
  • Willem-Jan van Hoeve
    • 1
  • J. N. Hooker
    • 1
  1. 1.Tepper School of BusinessCarnegie Mellon UniversityPittsburghU.S.A.

Personalised recommendations