Skip to main content

Including Ordinary Differential Equations Based Constraints in the Standard CP Framework

  • Conference paper
Principles and Practice of Constraint Programming – CP 2010 (CP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6308))

Abstract

Coupling constraints and ordinary differential equations has numerous applications. This paper shows how to introduce constraints involving ordinary differential equations into the numerical constraint satisfaction problem framework in a natural and efficient way. Slightly adapted standard filtering algorithms proposed in the numerical constraint satisfaction problem framework are applied to these constraints leading to a branch and prune algorithm that handles ordinary differential equations based constraints. Preliminary experiments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Raïssi, T., Ramdani, N., Candau, Y.: Set membership state and parameter estimation for systems described by nonlinear differential equations. Automatica 40(10), 1771–1777 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Granvilliers, L., Cruz, J., Barahona, P.: Parameter estimation using interval computations. SIAM J. Sci. Comput. 26(2), 591–612 (2005)

    Article  MathSciNet  Google Scholar 

  3. Kapela, T., Simó, C.: Computer assisted proofs for nonsymmetric planar choreographies and for stability of the eight. Nonlinearity 20(5), 1241 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Lin, Y., Stadtherr, M.A.: Guaranteed state and parameter estimation for nonlinear continuous-time systems with bounded-error measurements. Industrial & Engineering Chemistry Research 46(22), 7198–7207 (2007)

    Article  Google Scholar 

  5. Johnson, T., Tucker, W.: Brief paper: Rigorous parameter reconstruction for differential equations with noisy data. Automatica 44(9), 2422–2426 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Lin, Y., Enszer, J.A., Stadtherr, M.A.: Enclosing all solutions of two-point boundary value problems for odes. Computers & Chemical Engineering 32(8), 1714–1725 (2008)

    Article  Google Scholar 

  7. Cruz, J., Barahona, P.: Constraint Satisfaction Differential Problems. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 259–273. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Cruz, J., Barahona, P.: Constraint reasoning in deep biomedical models. Artificial Intelligence in Medicine 34(1), 77–88 (2005)

    Article  Google Scholar 

  9. Moore, R.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)

    MATH  Google Scholar 

  10. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge Univ. Press, Cambridge (1990)

    MATH  Google Scholar 

  11. Benhamou, F., Older, W.: Applying Interval Arithmetic to Real, Integer and Boolean Constraints. Journal of Logic Programming 32(1), 1–24 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Van Hentenryck, P., McAllester, D., Kapur, D.: Solving polynomial systems using a branch and prune approach. SIAM J. Numer. Anal. 34(2), 797–827 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Granvilliers, L.: A symbolic-numerical branch and prune algorithm for solving non-linear polynomial systems. Journal of Universal Computer Science 4(2), 125–146 (1998)

    MATH  MathSciNet  Google Scholar 

  14. Goldsztejn, A., Goualard, F.: Box Consistency through Adaptive Shaving. In: Proc. of ACM SAC 2010, pp. 2049–2054 (2010)

    Google Scholar 

  15. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Springer, Heidelberg (2000)

    Google Scholar 

  16. Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: Validated Solutions of Initial Value Problems for Ordinary Differential Equations. Applied Mathematics and Computation 105(1), 21–68 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Janssen, M., Deville, Y., Hentenryck, P.V.: Multistep filtering operators for ordinary differential equations. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 246–260. Springer, Heidelberg (1999)

    Google Scholar 

  18. Zgliczynski, P.: C1-Lohner Algorithm. Foundations of Computational Mathematics 2(4), 429–465 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Goldsztejn, A., Hayes, W.: Reliable Inner Approximation of the Solution Set to Initial Value Problems with Uncertain Initial Value. In: Proceedings of SCAN 2006, p. 19. IEEE Press, Los Alamitos (2006)

    Google Scholar 

  20. Goldsztejn, A., Michel, C., Rueher, M.: Efficient Handling of Universally Quantified Inequalities. Constraints 14(1), 117–135 (2008)

    Article  MathSciNet  Google Scholar 

  21. Goldsztejn, A., Granvilliers, L.: A New Framework for Sharp and Efficient Resolution of NCSP with Manifolds of Solutionss. Constraints 15(2), 190–212 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Eveillard, D., Ropers, D., de Jong, H., Branlant, C., Bockmayr, A.: A multi-scale constraint programming model of alternative splicing regulation. Theor. Comput. Sci. 325(1), 3–24 (2004)

    Article  MATH  Google Scholar 

  23. Carlson, B., Gupta, V.: Hybrid cc with interval constraints. In: HSCC 1998: Proceedings of the First International Workshop on Hybrid Systems, pp. 80–95 (1998)

    Google Scholar 

  24. Gupta, V., Jagadeesan, R., Saraswat, V.A.: Computing with continuous change. Sci. Comput. Program. 30(1-2), 3–49 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kuzmic, P.: Program DYNAFIT for the Analysis of Enzyme Kinetic Data: Application to HIV Proteinase. Analytical Biochemistry 237(2), 260–273 (1996)

    Article  Google Scholar 

  26. Mendes, P., Kell, D.: Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14(10), 869–883 (1998)

    Article  Google Scholar 

  27. Lin, Y., Stadtherr, M.A.: Validated solutions of initial value problems for parametric odes. Applied Numerical Mathematics 57(10), 1145–1162 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hlavácek, V., Marek, M., Kubícek, M.: Modelling of chemical reactors – X multiple solutions of enthalpy and mass balances for a catalytic reaction within a porous catalyst particle. Chemical Engineering Science 23(9), 1083–1097 (1968)

    Article  Google Scholar 

  29. Chen, Y.: Dynamic systems optimization. Ph. D. Thesis, University of California (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goldsztejn, A., Mullier, O., Eveillard, D., Hosobe, H. (2010). Including Ordinary Differential Equations Based Constraints in the Standard CP Framework. In: Cohen, D. (eds) Principles and Practice of Constraint Programming – CP 2010. CP 2010. Lecture Notes in Computer Science, vol 6308. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15396-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15396-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15395-2

  • Online ISBN: 978-3-642-15396-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics