Skip to main content

Neural Data Analysis and Reduction Using Improved Framework of Information-Preserving EMD

  • Conference paper
  • 1600 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6283))

Abstract

This paper presents several improvements to the framework of information-preserving empirical mode decomposition (EMD). The basic framework was presented in our previous work [1]. The method decomposes a non-stationary neural response into a number of oscillatory modes varying in information content. After the spectral information analysis only few modes, taking part in stimulus coding, are retrieved for further analysis. The improvements and enhancement have been proposed for the steps involved in information quantification and modes extraction. An investigation has also been carried out for compression of retrieved informative modes of the neural signal in order to achieve a lower bit rate using the proposed framework. Experimental results are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mehboob, Z., Yin, H.: Information preserving empirical mode decomposition for filtering field potentials. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp. 226–233. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Rilling, G., Flandrin, P., Gonalves, P.: On empirical mode decomposition and its algorithms (2003), http://perso.ens-lyon.fr/patrick.flandrin/nsip03.pdf

  3. Flandrin, P., Rilling, G., Goncalv‘es, P.: Empirical mode decomposition as a filter bank. IEEE Sig. Proc. Lett, 112–114 (2004)

    Google Scholar 

  4. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Royal Soc. 454, 903–995 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Percival, D.B., Walden, A.T.: Spectral analysis for physical applications: multitapper and conventional univariate techniques. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  6. Mandic, D.P., Souretis, G., Leong, W.Y., Looney, D., Van Hulle, M.M., Tanaka, T.: Complex empirical mode decomposition for multichannel information fusion. In: Signal Processing Techniques for Knowledge Extraction and Information Fusion, pp. 243–260. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Hämäläinen, M., Hari, R., Ilmoniemi, R.J., Knuutila, J., Lounasmaa, O.V.: Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 65(2), 413–497 (1993)

    Article  Google Scholar 

  8. Belitski, A., Gretton, A., Magri, C., Murayama, Y., Montemurro, M., Logothetis, N., Panzeri, S.: Low frequency local field potentials and spikes in primary visual cortex convey independent visual information. J. Neurosci. 28(22), 5696–5709 (2008)

    Article  Google Scholar 

  9. Rodrigo, Q.Q., Panzeri, S.: Extracting information from neuronal populations: information theory and decoding approaches. Nat. Rev. Neurosci. 10(3), 173–185 (2009)

    Google Scholar 

  10. Magri, C., Whittingstall, K., Singh, V., Logothetis, N., Panzeri, S.: A toolbox for the fast information analysis of multiple-site lfp, eeg and spike train recordings. BMC Neuroscience 10(81), 1–24 (2009)

    Google Scholar 

  11. Gunduz, A., Principe, J.C.: Correntropy as a novel measure for nonlinearity tests. Signal Processing 89, 14–23 (2009)

    Article  MATH  Google Scholar 

  12. Liu, W., Pokharel, P.P., Principe, J.C.: Correntropy: A localized similarity measure. In: IJCNN, pp. 4919–4924 (2006)

    Google Scholar 

  13. Khaldi, K., Boudraa, A.O., Turk, M., Chonave, T., Samaali, I.: Audio encoding based on empirical mode decomposition. In: EUSIPCO, pp. 924–928 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mehboob, Z., Yin, H. (2010). Neural Data Analysis and Reduction Using Improved Framework of Information-Preserving EMD. In: Fyfe, C., Tino, P., Charles, D., Garcia-Osorio, C., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2010. IDEAL 2010. Lecture Notes in Computer Science, vol 6283. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15381-5_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15381-5_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15380-8

  • Online ISBN: 978-3-642-15381-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics