Skip to main content

Discrete Finite Systems

  • Chapter
  • First Online:
Tractable Models of Solid Mechanics

Part of the book series: Foundations of Engineering Mechanics ((FOUNDATIONS))

  • 965 Accesses

Abstract

An asymptotic approach is rather efficient when dealing with the theory of oscillations, since one often can figure out a number of relatively simple limit cases which can be efficiently treated and completely understood. Such an approach allows the deepest possible simplification but preserves the most significant features of dynamical behavior. At the same time, one can use the expansions by small parameters characterizing the deviation of the system from the tractable limit case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhmeriev, N.N., Ankiewicz, A.: Solitons: Nonlinear Pulses and Beams. Chapman and Hall, London (1992)

    Google Scholar 

  • Andrianov, I.V.: Asymptotic solutions for nonlinear systems with high degree of nonlinearity. PMM J. App. Math. Mech. 57, 941–943 (1993)

    Article  MathSciNet  Google Scholar 

  • Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York, NY (1978)

    MATH  Google Scholar 

  • Arnold, V.I., Afrajmovich, V.S., Il’yashenko, Yu.S., Shil’nikov, L.P.: Dynamical Systems V. Encyclopedia of Mathematical Sciences. Springer, Berlin (1994)

    Book  Google Scholar 

  • Arnold, V.I., Kozlov, V.V., Neishtadt, A.I., Khukhro, E.: Mathematical Aspects of Classical and Chelestial Mechanics. Springer, Berlin (2006)

    Google Scholar 

  • Atay, F.M.: Distributed delays facilitate amplitude death of coupled oscillators. Phys. Rev. Lett. 91, 094101 (2003)

    MathSciNet  Google Scholar 

  • Azeez, M.A.F., Vakakis, A.F., Manevich, L.I.: Exact solutions of the problem of the vibro-impact oscillations of a discrete system with two degrees of freedom. J. App. Math. Mech. 63, 527–530 (1999)

    Article  MathSciNet  Google Scholar 

  • Babitsky, V.I., Veprik, A.M.: Universal bumpered vibration isolator for severe environment. J. Sound Vib. 218, 269–292 (1998)

    Article  Google Scholar 

  • Berinde, V.: Iterative Approximation of Fixed Points. Springer, New York, NY (2007)

    MATH  Google Scholar 

  • Binder, P., Abraimov, D., Ustinov, A.V., Flach, S., Zolotaryuk, Y.: Observation of breathers in Josephson ladders. Phys. Rev. Lett. 84, 745–748 (2000)

    Google Scholar 

  • Blekhman, I.I.: Vibrational Mechanics: Nonlinear Dynamic Effects, General Approach, Applications. World Scientific, Singapore (2000)

    Book  Google Scholar 

  • Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Springer, New York, NY (1989)

    Book  MATH  Google Scholar 

  • Burns, T.J., Jones, C.K.R.T.: Mechanism for capture into resonance. Physica D. 69, 85–106 (2003)

    Article  MathSciNet  Google Scholar 

  • Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 2, pp. 136–147. Wiley, New York, NY (1962)

    MATH  Google Scholar 

  • Den Hartog, J.P.: Mechanical Vibrations. McGraw-Hill, New York, NY (1956)

    MATH  Google Scholar 

  • Eiermann, B., Anker, T., Albiez, M., Taglieber, M., Marzlin, K.P., Oberthaler, M.K.: Bright Bose - Einstein gap solitons of atoms with repulsive interaction. Phys. Rev. Lett., 92, 230401 (2004)

    Google Scholar 

  • Eilbeck, J.C., Lomdahl, P.S., Scott, A.C.: The discrete self – trapping equation. Physica D. 16, 318–338 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Eisenberg, H.S., Silberberg, Y., Morandotti, R., Boyd, A.R., Aitchison, J.S.: Discrete spatial optical solitons in waveguide arrays. Phys. Rev. Lett. 81, 3383 (1998)

    Google Scholar 

  • Feng, B.-F.: An integrable three particle system related to intrinsic localized modes in Fermi-Pasta-Ulam-beta chain. J. Phys. Soc. Jpn. 75, 014401 (2006)

    Article  Google Scholar 

  • Fermi, E., Pasta, J., Ulam, S.: Los Alamos Science Laboratory Report No. LA-1940 unpublished; (Reprinted in Collected Papers of Enrico Fermi, E. Segre (ed.). University of Chicago Press, Chicago, 1965), vol. 2, p. 978 (1955)

    Google Scholar 

  • Flach, S., Ivanenchenko, M.V., Kanakov, O.V.: q-breathers in Fermi-Pasta-Ulam chains: existence, localization, and stability. Phys. Rev. E. 73, 036618 (2006)

    Google Scholar 

  • Gendelman, O.: Transition of energy to a nonlinear localized mode in a highly asymmetric system of two oscillators. Nonlinear Dyn. 25, 237–253 (2001)

    Article  MATH  Google Scholar 

  • Gendelman, O.V.: Bifurcations of nonlinear normal modes of linear oscillator with strongly nonlinear damped attachment. Nonlinear Dyn. 37, 115–128 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Gendelman, O.V.: Modeling of inelastic impacts with the help of smooth functions. Chaos Solitons Fractals. 28, 522–526 (2006)

    Article  MATH  Google Scholar 

  • Gendelman, O.V., Gorlov, D.V., Manevitch, L.I., Musienko, A.I.: Dynamics of coupled linear and essentially nonlinear oscillators with substantially different masses. J. Sound Vib. 286, 1–19 (2005)

    Article  Google Scholar 

  • Gendelman, O., Manevitch, L.I., Vakakis, A.F., M’Closkey, R.: Energy pumping in nonlinear mechanical oscillators I: dynamics of the underlying hamiltonian systems. ASME J. App. Mech. 68, 34–41 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Gendelman, O.V., Meimukhin, D.: Response regimes of integrable damped strongly nonlinear oscillator under impact periodic forcing. Chaos Solitons Fractals. 32(2), 405–414 (2007)

    Article  Google Scholar 

  • Gendeman, O.V., Starosvetsky, Y., Feldman, M.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink I. Description of response regimes. Nonlinear Dyn. 51, 31–46 (2008)

    Article  Google Scholar 

  • Goldreich, P., Peale, S.: Spin-orbit coupling in the solar system. Astron. J. 71, 425–438 (1966)

    Article  Google Scholar 

  • Gourdon, E., Lamarque, C.H.: Energy pumping with various nonlinear structures: numerical evidences. Nonlinear Dyn. 40, 281–307 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Grosberg, Y.A., Khokhlov, A.R.: Statistical Physics of Macromolecules. Nauka, Moscow (1989) [in Russian]

    Google Scholar 

  • Guckenheimer, J., Hoffman, K., Weckesser, W.: Bifurcations of relaxation oscillations near folded saddles. Int. J. Bifurcat. Chaos. 15, 3411–3421 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York, NY (2002)

    Google Scholar 

  • Guckenheimer, J., Wechselberger, M.: Lai-Sang Young: chaotic attractors of relaxation oscillators. Nonlinearity. 19, 701–720 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Jackson, E.A.: Perspectives of Nonlinear Dynamics, vol. 1. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  • Kauderer, H.: Nichtlineare Mechanik. Springer, Berlin (1958)

    Book  MATH  Google Scholar 

  • Kevorkian, J., Cole, J.D.: Multiple Scale and Singular Perturbation Methods. Springer, Berlin/NewYork (1996)

    Book  MATH  Google Scholar 

  • Khasnutdinova, K.R., Pelinovsky, D.E.: On the exchange of energy in coupled Klein-Gordon equations. Wave Motion. 38, 1–10 (2003)

    Article  MathSciNet  Google Scholar 

  • Korn, G.A., Korn, T.M.: Mathematical Handbook for Scientists and Engineers, 2nd edn. Dover Publications, New York, NY (2000)

    Google Scholar 

  • Kosevitch, A.M., Kovalyov, A.S.: Introduction to Nonlinear Dynamics. Naukova Dumka, Kiev (1989) [in Russian]

    Google Scholar 

  • Landa, P.S.: Nonlinear Oscillations and Waves in Dynamical Systems. Springer, Berlin (1996)

    MATH  Google Scholar 

  • Landau, L.D., Lifshits, E.M.: Mechanics. Butterworth-Heinemann, Boston, MA (1976)

    Google Scholar 

  • Lin, W.A., Reichl, L.E.: External field induced chaos in an infinite square well potential. Physica D. 19, 145–152 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Lyapunov, A.: The General Problem of the Stability of Motion. Princeton University Press, Princeton, NJ (1947)

    Google Scholar 

  • Machida, M., Koyama, T.: Localized rotating-modes in capacitively coupled intrinsic Josephson junctions: systematic study of branching structure and collective dynamical instability. Phys. Rev. B. 70, 024523 (2004)

    Article  Google Scholar 

  • Manevich, A.I., Manevitch, L.I.: The Mechanics of Nonlinear Systems with Internal Resonances. Imperial College Press, London (2005)

    Book  MATH  Google Scholar 

  • Manevitch, L.I.: Complex representation of dynamics of coupled nonlinear oscillators. In: Uvarova, L., Arinstein, A., Latyshev, A. (eds.) Mathematical Models of Non-Linear Excitations, Transfer Dynamics and Control in Condensed Systems and Other Media, pp. 269–300. Kluwer Academic Publishers, Dordrecht (1999)

    Chapter  Google Scholar 

  • Manevitch, L.I.: The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables. Nonlinear Dyn. 25, 95–109 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Manevitch, L.I.: New approach to beating phenomenon in coupled nonlinear oscillatory chains. In: Avrejcewicz, J. (ed.) Dynamical Systems:Theory and Applications, vol. 1, pp. 119–137. Lodz, Poland (2005)

    Google Scholar 

  • Manevitch, L.I.: New approach to beating phenomenon in coupled nonlinear oscillatory chains. Arch. Appl. Mech. 77, 301–312 (2007)

    Article  MATH  Google Scholar 

  • Manevitch, L.I., Azeez, M.A.F., Vakakis, A.F.: Exact solutions for a discrete systems undergoing free vibro – impact oscillations. In: Babitsky, V.I. (ed.) Dynamics of Vibro – Impact Systems, Proceedings of the Euromech Colloquium 15–18 September 1998. Springer, New York, NY (1998)

    Google Scholar 

  • Manevitch, L.I., Gourdon, E., Lamarque, C.-H.: Towards the design of an optimal energetic sink in a strongly inhomogeneous two-degree-of-freedom system. ASME J. App. Mech. 74, 1078–1086 (2007)

    Article  Google Scholar 

  • Manevitch, L.I., Mikhlin, Yu.V., Pilipchuk, V.N.: The Method of Normal Vibrations for Essentially Nonlinear Systems. Nauka, Moscow (1989) [in Russian]

    Google Scholar 

  • Meirovitch, L.: Principles and Techniques of Vibrations. Prentice Hall, Upper Saddle River, NJ (2000)

    Google Scholar 

  • Melnikov, V.K.: On the stability of the center for time periodic perturbations. Trans. Moscow Math. Soc. 12, 1–57 (1963)

    Google Scholar 

  • Nayfeh, A.H.: Perturbation Methods. Wiley, New York, NY (2000)

    Book  MATH  Google Scholar 

  • Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York, NY (1995)

    Book  Google Scholar 

  • Neishtadt, A.I.: Passage through a separatrix in a resonance problem with slowly varying parameter. J. Appl. Math. Mech. 39, 594–605 (1975)

    Article  MathSciNet  Google Scholar 

  • Pikovsky, A., Rosenblum, M., Kurtz, J.: Synchronization: Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  • Pilipchuk, V.N.: A transformation of vibrating systems based on a non-smooth periodic pair of functions. Dokl. Akad. Nauk UkrSSR (Ukrainian Acad. Sci. Rep.). A(4), 37–40 (1988) [in Russian]

    MathSciNet  Google Scholar 

  • Pilipchuk, V.N.: Application of special non-smooth temporal transformations to linear and nonlinear systems under discontinuous and impulsive excitation. Nonlinear Dyn. 18, 203–234 (1999a)

    Article  MathSciNet  MATH  Google Scholar 

  • Pilipchuk, V.N.: Strongly nonlinear vibrations of damped oscillators with two non-smooth limits. J. Sound Vib. 302, 398–402 (1999b)

    Article  MathSciNet  Google Scholar 

  • Pilipchuk, V.N.: Impact modes in discrete vibrating systems with rigid barriers. Int. J. Non Linear Mech. 36, 999–1012 (2001)

    Article  MATH  Google Scholar 

  • Quinn, D.D., Rand, R.H., Bridge, J.: The dynamics of resonance capture. Nonlinear Dyn. 8, 1–20 (1995)

    Article  MathSciNet  Google Scholar 

  • Rand, R.H.: The dynamics of resonance capture. In: Guran, A. (ed.) Proceedings of the First International Symposium on Impact and Friction of Solids, Structures and Intelligent Machines, pp. 91–94. World Scientific, Ottawa, ON (1998)

    Google Scholar 

  • Rand, R.H.: Lecture Notes on Nonlinear Vibrations. The Internet-First University Press, Cornell University. http://ecommons.library.cornell.edu/handle/1813/62 (2009). Accessed 7 Aug 2009

  • Rand, R.H., Quinn, D.D.: Resonant capture in a system of two coupled homoclinic oscillators. J. Vibr. Control. 1, 41–56 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Rosenberg, R.M.: Normal modes in nonlinear dual-mode systems. J. App. Mech. 27, 263–268 (1960)

    Article  MATH  Google Scholar 

  • Rosenberg, R.M.: The normal modes of nonlinear n-degree-of-freedom systems. J. App. Mech. 29, 7–14 (1962)

    Article  MATH  Google Scholar 

  • Rosenberg, R.M.: On nonlinear vibrations of systems with many degrees of freedom. Adv. Appl. Mech. 9, 155–242 (1966)

    Article  Google Scholar 

  • Saaty, T.L.: Modern Nonlinear Equations. Dover Publications Inc., New York, NY (1981)

    MATH  Google Scholar 

  • Salenger, G., Vakakis, A.F., Gendelman, O.V., Andrianov, I.V., Manevitch, L.I.: Transitions from strongly- to weekly-nonlinear motions of damped nonlinear oscillators. Nonlinear Dyn. 20, 99–114 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Sato, M., Hubbard, B.E., Sievers, A.J., Ilic, B., Craighead, H.G.: Optical manipulation of intrinsic localized vibrational energy in cantilever arrays. Europhys. Lett. 66, 318 (2004)

    Article  Google Scholar 

  • Sato, M., Hubbard, B.E., Sievers, A.J., Ilic, B., Czaplewski, D.A., Craighead, H.G.: Observation of locked intrinsic localized vibrational modes in a micromechanical oscillator array. Phys. Rev. Lett. 90, 044102 (2003)

    Article  Google Scholar 

  • Schwarz, U.T., English, L.Q., Sievers, A.J.: Experimental generation and observation of intrinsic localized spin wave modes in an antiferromagnet. Phys. Rev. Lett. 83, 223 (1999)

    Article  Google Scholar 

  • Scott, A.S., Lomdahl, P.S., Eilbeck, J.C.: Between the local-mode and normal-mode limits. Chem. Phys. Lett. 113, 29–36 (1985)

    Google Scholar 

  • Sen, A.K., Rand, R.H.: A numerical investigation of the dynamics of a system of two time-delay coupled relaxation oscillators. Commun. Pure App. Anal. 2, 567–577 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Shaw, S.W., Pierre, C.: Nonlinear normal modes and invariant manifolds. J. Sound Vib. 150, 170–173 (1991)

    Article  MathSciNet  Google Scholar 

  • Shaw, S.W., Pierre, C.: Normal modes for nonlinear vibratory systems. J. Sound Vib. 164, 85–124 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Sievers, A.J., Takeno, S.: Intrinsic localized modes in anharmonic crystals. Phys. Rev. Lett. 61, 970–973 (1988)

    Article  Google Scholar 

  • Sokolov, I.J., Babitsky, V.I., Halliwell, N.A.: Hand-held percussion machines with low emission of hazardous vibration. J. Sound Vib. 306, 59–73 (2007)

    Article  Google Scholar 

  • Starosvetsky, Y., Gendelman, O.V.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink II: Optimization of a nonlinear vibration absorber. Nonlinear Dyn. 51, 47–57 (2008)

    Article  MATH  Google Scholar 

  • Swanson, B.I., Brozik, J.A., Love, S.P., Strouse, G.F., Shreve, A.P., Bishop, A.R., Wang, W.Z., Salkola, M.I.: Observation of intrinsically localized modes in a discrete low-dimensional material. Phys. Rev. Lett. 82, 3288 (1999)

    Article  Google Scholar 

  • Uzunov, I.M., Muschall, R., Gölles, M., Kivshar, Y.S., Malomed, B.A., Lederer, F.: Pulse switching in nonlinear fiber directional couplers. Phys. Rev. E. 51, 2527–2537 (1995)

    Article  Google Scholar 

  • Vakakis, A.F., Gendelman, O.: Energy pumping in nonlinear mechanical oscillators II: resonance capture. ASME J. App. Mech. 68, 42–48 (2008)

    Article  MathSciNet  Google Scholar 

  • Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerchen, G., Lee, Y.-S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems. Springer, Berlin (2008)

    Google Scholar 

  • Vakakis, A.F., Manevitch, L.I., Mikhlin, Yu.V., Pilipchuk, V.N., Zevin, A.A.: Normal Modes and Localization in Nonlinear Systems. Wiley, New York, NY (1996)

    Book  MATH  Google Scholar 

  • Wirkus, S., Rand, R.H.: The Dynamics of two coupled van der pol oscillators with delay coupling. Nonlinear Dyn. 30, 205–221 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhuravlev, V.F., Klimov, D.M.: Applied Methods in Vibration Theory. Nauka, Moscow (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Manevitch, L.I., Gendelman, O.V. (2011). Discrete Finite Systems. In: Tractable Models of Solid Mechanics. Foundations of Engineering Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15372-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15372-3_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15371-6

  • Online ISBN: 978-3-642-15372-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics