Skip to main content

Better Gap-Hamming Lower Bounds via Better Round Elimination

  • Conference paper
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (RANDOM 2010, APPROX 2010)

Abstract

Gap Hamming Distance is a well-studied problem in communication complexity, in which Alice and Bob have to decide whether the Hamming distance between their respective n-bit inputs is less than \(n/2-\sqrt{n}\) or greater than \(n/2+\sqrt{n}\). We show that every k-round bounded-error communication protocol for this problem sends a message of at least Ω(n/(k 2logk)) bits. This lower bound has an exponentially better dependence on the number of rounds than the previous best bound, due to Brody and Chakrabarti. Our communication lower bound implies strong space lower bounds on algorithms for a number of data stream computations, such as approximating the number of distinct elements in a stream.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajtai, M.: A lower bound for finding predecessors in Yao’s cell probe model. Combinatorica 8, 235–247 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ball, K.: An elementary introduction to modern convex geometry. Flavors of Geometry 31 (1997)

    Google Scholar 

  3. Barvinok, A.: Lecture notes on measure concentration (2005), http://www.math.lsa.umich.edu/~barvinok/total710.pdf

  4. Brieden, A., Gritzmann, P., Kannan, R., Klee, V., Lovász, L., Simonovits, M.: Approximation of diameters: Randomization doesn’t help. In: Proceedings of 39th IEEE Symposium on Foundations of Computer Science (FOCS 1998), pp. 244–251 (1998)

    Google Scholar 

  5. Brody, J., Chakrabarti, A.: A multi-round communication lower bound for Gap Hamming and some consequences. In: Proceedings of 24th IEEE Conference on Computational Complexity (CCC 2009), pp. 358–368 (2009)

    Google Scholar 

  6. Chakrabarti, A., Regev, O.: Tight lower bound for the Gap Hamming problem. Personal Communication (2009)

    Google Scholar 

  7. Chvátal, V.: The tail of the hypergeometric distribution. Discrete Mathematics 25(3), 285–287 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  8. Goemans, M., Williamson, D.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM 42, 1115–1145 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Harper, L.: Optimal numbering and isoperimetric problems on graphs. Journal of Combinatorial Theory 1, 385–393 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  10. Indyk, P., Woodruff, D.: Tight lower bounds for the distinct elements problem. In: Proceedings of 44th IEEE Symposium on Foundations of Computer Science (FOCS 2003), pp. 283–289 (2003)

    Google Scholar 

  11. Jayram, T.S., Kumar, R., Sivakumar, D.: The one-way communication complexity of Hamming distance. Theory of Computing 4(1), 129–135 (2008)

    Article  MathSciNet  Google Scholar 

  12. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  13. Lee, T.,, S.: Disjointness is hard in the multi-party number-on-the-forehead model. In: Proceedings of 23rd IEEE Conference on Computational Complexity (CCC 2008), pp. 81–91 (2008)

    Google Scholar 

  14. Lévy, P.: Problèmes concrets d’analyse fonctionnelle. Gauthier-Villars (1951)

    Google Scholar 

  15. Linial, N., Shraibman, A.: Lower bounds in communication complexity based on factorization norms. In: Proceedings of 39th ACM Symposium on the Theory of Computing (STOC 2007), pp. 699–708 (2007)

    Google Scholar 

  16. Matoušek, J.: Lectures on Discrete Geometry. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  17. Miltersen, P., Nisan, N., Safra, S., Wigderson, A.: On data structures and asymmetric communication complexity. J. Comput. Syst. Sci. 57(1), 37–49 (1998); preliminary version in Proceedings of 27th ACM Symposium on the Theory of Computing (STOC 1995), pp. 103–111 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Razborov, A.: Quantum communication complexity of symmetric predicates. Izvestiya of the Russian Academy of Science, Mathematics 67, 0204025 (2002)

    Google Scholar 

  19. Sherstov, A.: The pattern matrix method for lower bounds on quantum communication. In: Proceedings of 40th ACM Symposium on the Theory of Computing (STOC 2008), pp. 85–94 (2008)

    Google Scholar 

  20. Woodruff, D.: Optimal space lower bounds for all frequency moments. In: Proceedings of 15th ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), pp. 167–175 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brody, J., Chakrabarti, A., Regev, O., Vidick, T., de Wolf, R. (2010). Better Gap-Hamming Lower Bounds via Better Round Elimination. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. RANDOM APPROX 2010 2010. Lecture Notes in Computer Science, vol 6302. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15369-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15369-3_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15368-6

  • Online ISBN: 978-3-642-15369-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics