Skip to main content

Abstract

In this paper we consider the checkpoint problem. The input consists of an undirected graph G, a set of source-destination pairs {(s 1,t 1), ...,(s k ,t k )}, and a collection \({\cal P}\) of paths connecting the (s i ,t i ) pairs. A feasible solution is a multicut E′; namely, a set of edges whose removal disconnects every source-destination pair. For each \(p\in {\cal P}\) we define cp E(p) = |p ∩ E′|. In the sum checkpoint (SCP) problem the goal is to minimize \(\sum_{p \in \mathcal{P}} {\mathsf{cp}}_{E'}(p)\), while in the maximum checkpoint (MCP) problem the goal is to minimize \(\max_{p \in \mathcal{P}} {\mathsf{cp}}_{E'}(p)\). These problem have several natural applications, e.g., in urban transportation and network security. In a sense, they combine the multicut problem and the minimum membership set cover problem.

For the sum objective we show that weighted SCP is equivalent, with respect to approximability, to undirected multicut. Thus there exists an O(logn) approximation for SCP in general graphs.

Our current approximability results for the max objective have a wide gap: we provide an approximation factor of \(O\big(\!\sqrt{n\log n}/{\mathsf{opt}}\,\big)\) for MCP and a hardness of 2 under the assumption P ≠ NP. The hardness holds for trees, in which case we can obtain an asymptotic approximation factor of 2.

Finally we show strong hardness for the well-known problem of finding a path with minimum forbidden pairs, which in a sense can be considered the dual to the checkpoint problem. Despite various works on this problem, hardness of approximation was not known prior to this work. We show that the problem cannot be approximated within c n for some constant c > 0, unless P = NP. This is the strongest type of hardness possible. It carries over to directed acyclic graphs and is a huge improvement over the plain NP-hardness of Gabow (SIAM J. Comp 2007, pages 1648–1671).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chawla, S., Krauthgamer, R., Kumar, R., Rabani, Y., Sivakumar, D.: On the hardness of approximating multicut and sparsest-cut. Computational Complexity 15(2), 94–114 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chen, T., Kao, M.Y., Tepel, M., Rush, J., Church, G.: A dynamic programming approach to de novo peptide sequencing via tandem mass spectrometry. Journal of Computational Biology 8(3), 325–337 (2001)

    Article  Google Scholar 

  3. Demaine, E.D., Feige, U., Hajiaghayi, M.T., Salavatipour, M.: Combination can be hard: approximability of the unique coverage problem. SIAM J. Comp. 38(4), 1464–1483 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dinur, I., Safra, S.: The importance of being biased. In: STOC, pp. 33–42 (2002)

    Google Scholar 

  5. Gabow, H., Maheswari, S., Osterweil, L.: On two problems in the generation of program test paths. IEEE Trans. Software Eng. 2(3), 227–231 (1976)

    Article  Google Scholar 

  6. Gabow, H.N.: Finding paths and cycles of superpolylogarithmic length. SIAM J. Comp. 36(6), 1648–1671 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Garg, N., Vazirani, V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow and multicut in trees. Algorithmica 18(1), 3–20 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi) cut theorems and their applications. SIAM Journal on Computing 25(2), 235–251 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Håstad, J.: Some optimal inapproximability results. J. of the ACM 48(4), 798–859 (2001)

    Article  MATH  Google Scholar 

  10. Hochbaum, D.: Approximation algorithms for NP-hard problems. PWS Publishing Co. (1997)

    Google Scholar 

  11. Khot, S.: On the unique games conjecture. In: FOCS, p. 3 (2005)

    Google Scholar 

  12. Kolman, P., Pangrac, O.: On the complexity of paths avoiding forbidden pairs. Discrete applied math. 157, 2871–2877 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kortsarts, Y., Kortsarz, G., Nutov, Z.: Greedy approximation algorithms for directed multicuts. Networks 45(4), 214–217 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kortsarz, G.: On the hardness of approximating spanners. Algorithmica 30(3), 432–450 (2001)

    MATH  MathSciNet  Google Scholar 

  15. Krause, K., Smith, R., Goodwin, M.: Optimal software test planning through authomated search analysis. In: IEEE Symp. Computer Software Reliability, pp. 18–22 (1973)

    Google Scholar 

  16. Kuhn, F., von Rickenbach, P., Wattenhofer, R., Welzl, E., Zollinger, A.: Interference in cellular networks: The minimum membership set cover problem. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 188–198. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Nelson, J.: Notes on min-max multicommodity cut on paths and trees. Manuscript (2009)

    Google Scholar 

  18. Schaefer, T.J.: The complexity of satisfiability problems. In: Proc. of the 10th of the Tenth Annual ACM Symposium on Theory of Computing, pp. 216–226 (1978)

    Google Scholar 

  19. Strimani, P., Sinha, B.: Impossible pair-constrained test path generation in a program. Information Sciences 28, 87–103 (1982)

    Article  MathSciNet  Google Scholar 

  20. Varadarajan, K., Venkataraman, G.: Graph decomposition and a greedy algorithm for edge-disjoint paths. In: SODA, pp. 379–380 (2004)

    Google Scholar 

  21. Yannakakis, M.: On a class of totally unimodular matrices. In: FOCS, pp. 10–16 (1980)

    Google Scholar 

  22. Yinnone, H.: On paths avoiding forbidden pairs of vertices in a graph. Discrete Appl. Math. 74(1), 85–92 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hajiaghayi, M., Khandekar, R., Kortsarz, G., Mestre, J. (2010). The Checkpoint Problem. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. RANDOM APPROX 2010 2010. Lecture Notes in Computer Science, vol 6302. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15369-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15369-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15368-6

  • Online ISBN: 978-3-642-15369-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics