Skip to main content

Stochastic Spectral Galerkin and Collocation Methods for PDEs with Random Coefficients: A Numerical Comparison

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 76))

Abstract

Much attention has recently been devoted to the development of Stochastic Galerkin (SG) and Stochastic Collocation (SC) methods for uncertainty quantification. An open and relevant research topic is the comparison of these two methods. By introducing a suitable generalization of the classical sparse grid SC method, we are able to compare SG and SC on the same underlying multivariate polynomial space in terms of accuracy vs. computational work. The approximation spaces considered here include isotropic and anisotropic versions of Tensor Product (TP), Total Degree (TD), Hyperbolic Cross (HC) and Smolyak (SM) polynomials. Numerical results for linear elliptic SPDEs indicate a slight computational work advantage of isotropic SC over SG, with SC-SM and SG-TD being the best choices of approximation spaces for each method. Finally, numerical results corroborate the optimality of the theoretical estimate of anisotropy ratios introduced by the authors in a previous work for the construction of anisotropic approximation spaces.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. I. Babenko. Approximation by trigonometric polynomials in a certain class of periodic functions of several variables. Soviet Math. Dokl., 1:672–675, 1960

    MATH  MathSciNet  Google Scholar 

  2. I. M. Babuška, R. Tempone, and G. E. Zouraris. Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal., 42(2):800–825, 2004

    Article  MATH  MathSciNet  Google Scholar 

  3. I. Babuška, F. Nobile, and R. Tempone. A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal., 45(3):1005–1034, 2007

    Article  MATH  MathSciNet  Google Scholar 

  4. V. Barthelmann, E. Novak, and K. Ritter. High dimensional polynomial interpolation on sparse grids. Adv. Comput. Math., 12(4):273–288, 2000

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Bieri, R. Andreev, and C. Schwab. Sparse tensor discretization of elliptic spdes. SAM-Report 2009-07, Seminar für Angewandte Mathematik, ETH, Zurich, 2009

    Google Scholar 

  6. P.J. Davis. Interpolation and approximation. Dover, New York, 1975. Republication, with minor corrections, of the 1963 original, with a new preface and bibliography

    Google Scholar 

  7. O. G. Ernst, C. E. Powell, D. J. Silvester, and E. Ullmann. Efficient solvers for a linear stochastic Galerkin mixed formulation of diffusion problems with random data. SIAM J. Sci. Comput., 31(2):1424–1447, 2008/09

    Google Scholar 

  8. P. Frauenfelder, C. Schwab, and R. A. Todor. Finite elements for elliptic problems with stochastic coefficients. Comput. Methods Appl. Mech. Eng., 194(2–5):205–228, 2005

    Article  MATH  MathSciNet  Google Scholar 

  9. B. Ganapathysubramanian and N. Zabaras. Sparse grid collocation schemes for stochastic natural convection problems. J. Comput. Phys., 225(1):652–685, 2007

    Article  MATH  MathSciNet  Google Scholar 

  10. W. Gautschi. Orthogonal Polynomials: Computation and Approximation. Oxford University Press, Oxford, 2004

    MATH  Google Scholar 

  11. R. G. Ghanem and P. D. Spanos. Stochastic Finite Elements: A Spectral Approach. Springer, New York, 1991

    MATH  Google Scholar 

  12. O. P. Le Maître, H. N. Najm, R. G. Ghanem, and O. M. Knio. Multi-resolution analysis of Wiener-type uncertainty propagation schemes. J. Comput. Phys., 197(2):502–531, 2004

    Article  MATH  MathSciNet  Google Scholar 

  13. H. G. Matthies and A. Keese. Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Eng., 194(12-16):1295–1331, 2005

    Article  MATH  MathSciNet  Google Scholar 

  14. F. Nobile and R. Tempone. Analysis and implementation issues for the numerical approximation of parabolic equations with random coefficients. MOX-Report 22-2008, Department of Mathematics, Politecnico di Milano, Italy, 2008. Int. J. Num. Methods Eng., Published online, June 12, 2009, DOI 10.1002/nme.2656

    Google Scholar 

  15. F. Nobile, R. Tempone, and C.G. Webster. An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal., 46(5):2411–2442, 2008

    Article  MATH  MathSciNet  Google Scholar 

  16. F. Nobile, R. Tempone, and C. G. Webster. A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal., 46(5):2309–2345, 2008

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Nouy, A. Clément, F. Schoefs, and N. Moës. An extended stochastic finite element method for solving stochastic partial differential equations on random domains. Comput. Methods Appl. Mech. Eng., 197(51-52):4663–4682, 2008

    Article  MATH  Google Scholar 

  18. M. F. Pellissetti and R. G. Ghanem. Iterative solution of systems of linear equations arising in the context of stochastic finite elements. Adv. Eng. Software, 31:607–616, 2000

    Article  MATH  Google Scholar 

  19. C. E. Powell and H. C. Elman. Block-diagonal preconditioning for spectral stochastic finite-element systems. IMA J. Numer. Anal., 29(2):350–375, 2009

    Article  MATH  MathSciNet  Google Scholar 

  20. A. Quarteroni, R. Sacco, and F. Saleri. Numerical mathematics, volume 37 of Texts in Applied Mathematics. Springer, Berlin, second edition, 2007

    Google Scholar 

  21. J. Shen and L-L. Wang. Sparse spectral approximations of high-dimensional problems based on hyperbolic cross. SIAM J. Numer. Anal., 48(3):1087–1109, 2010

    Google Scholar 

  22. S. A. Smolyak. Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk SSSR, 4:240–243, 1963

    Google Scholar 

  23. G. Stefanou. The stochastic finite element method: past, present and future. Comput. Methods Appl. Mech. Eng., 198:1031–1051, 2009

    Article  Google Scholar 

  24. R. A. Todor and C. Schwab. Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients. IMA J Numer Anal, 27(2):232–261, 2007

    Article  MATH  MathSciNet  Google Scholar 

  25. X. Wan and G. E. Karniadakis. Multi-element generalized polynomial chaos for arbitrary probability measures. SIAM J. Sci. Comput., 28(3):901–928, 2006

    Article  MATH  MathSciNet  Google Scholar 

  26. D. Xiu and J. S. Hesthaven. High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput., 27(3):1118–1139, 2005

    Article  MATH  MathSciNet  Google Scholar 

  27. D. Xiu and G. E. Karniadakis. The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput., 24(2):619–644, 2002

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The second and third authors have been supported by the Italian grant FIRB-IDEAS “Advanced numerical techniques for uncertainty quantification in engineering and life science problems”.

The authors would also like to recognize the support of the PECOS center at ICES, University of Texas at Austin (Project Number 024550, Center for Predictive Computational Science). Support from the VR project “Effektiva numeriska metoder för stokastiska differentialekvationer med tillämpningar” and King Abdullah University of Science and Technology (KAUST) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Nobile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this paper

Cite this paper

Bäck, J., Nobile, F., Tamellini, L., Tempone, R. (2011). Stochastic Spectral Galerkin and Collocation Methods for PDEs with Random Coefficients: A Numerical Comparison. In: Hesthaven, J., Rønquist, E. (eds) Spectral and High Order Methods for Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol 76. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15337-2_3

Download citation

Publish with us

Policies and ethics