Skip to main content

Evolution and Analysis of a Robot Controller Based on a Gene Regulatory Network

  • Conference paper
Evolvable Systems: From Biology to Hardware (ICES 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6274))

Included in the following conference series:

Abstract

This paper explores the application of an artificial developmental system (ADS) to the field of evolutionary robotics by investigating the capability of a gene regulatory network (GRN) to specify a general purpose obstacle avoidance controller both in simulation and on a real robot. Experiments are carried out using the e-puck robot platform. It is further proposed to use cross-correlation between inputs and outputs in order to assess the quality of robot controllers more accurately than with observing its behaviour alone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wolpert, L., Beddington, R., Jessell, T., Lawrence, P., Meyerowitz, E., Smith, J.: Principles of development. Oxford University Press, Oxford (2002)

    Google Scholar 

  2. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology 22, 437–467 (1969)

    Article  Google Scholar 

  3. De Jong, H.: Hybrid modeling and simulation of genetic regulatory networks: a qualitative approach. In: ERCIM News, pp. 267–282. Springer, Heidelberg (2003)

    Google Scholar 

  4. Astor, J.C.: A Developmental Model for the Evolution of Artificial Neural Networks: Design, Implementation and Evaluation. Artificial Life 6, 189–218 (1998)

    Article  Google Scholar 

  5. Miller, J.: Evolving developmental programs for adaptation, morphogenesis, and self-repair. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 256–265. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Eggenberger, P.: Evolving morphologies of simulated 3d organisms based on differential gene expression. In: Fourth European Conference on Artificial Life, pp. 205–213. The MIT Press, Cambridge (1997)

    Google Scholar 

  7. Bentley, P., Kumar, S.: Three ways to grow designs: A comparison of embryogenies for an evolutionary design problem. In: Proc. of the Genetic and Evolutionary Computation Conf., Orlando, Florida, USA, pp. 35–43. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  8. Hornby, G.: Generative representations for evolving families of designs. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 209–217. Springer, Heidelberg (2003)

    Google Scholar 

  9. Quick, T., Nehaniv, C.L., Dautenhahn, K., Roberts, G.: Evolving Embodied Genetic Regulatory Networks-driven Control Systems. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 266–277. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Floreano, D., Mondada, F.: Evolution of Homing Navigation in a Real Mobile Robot. IEEE Trans. on Systems, Man, and Cybernetics–Part B, 396–407 (1996)

    Google Scholar 

  11. Ziegler, J., Banzhaf, W.: Evolving Control Metabolisms for a Robot. Artificial Life 7, 171–190 (2001)

    Article  Google Scholar 

  12. Groß, R., Bonani, M., Mondada, F., Dorigo, M.: Autonomous self-assembly in swarmbots. IEEE Trans. Robot, 1115–1130 (2006)

    Google Scholar 

  13. Kumar, S.: A Developmental Genetics-inspired Approach to Robot Control. In: Proc. of the Workshops on Genetic and Evolutionary Computation (GECCO), pp. 304–309. ACM Press, New York (2005)

    Google Scholar 

  14. Trefzer, M.A., Kuyucu, T., Miller, J.F., Tyrrell, A.M.: A Model for Intrinsic Artificial Development Featuring Structural Feedback and Emergent Growth. In: Proc. of the IEEE Congress on Evolutionary Computation (CEC), Norway (2009)

    Google Scholar 

  15. Tarapore, D., Lungarella, M., Gomez, G.: Quantifying patterns of agent-environ-ment interaction. Robotics and {A}utonomous {S}ystems 54(2), 150–158 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Trefzer, M.A., Kuyucu, T., Miller, J.F., Tyrrell, A.M. (2010). Evolution and Analysis of a Robot Controller Based on a Gene Regulatory Network. In: Tempesti, G., Tyrrell, A.M., Miller, J.F. (eds) Evolvable Systems: From Biology to Hardware. ICES 2010. Lecture Notes in Computer Science, vol 6274. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15323-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15323-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15322-8

  • Online ISBN: 978-3-642-15323-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics