Skip to main content

Piezoceramic Scanners for Probe Nanomicroscopes

  • Chapter
  • First Online:
Piezoceramic Sensors

Part of the book series: Microtechnology and MEMS ((MEMS))

  • 1781 Accesses

Abstract

Nanotechnologies are a set of methods which make it possible to create and modify objects with components sized 100 nm and smaller. These components have principally new qualities. They assure integration into fully functioning systems of a larger scale [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.P. Maltsev (ed.), Nanomaterials. Nanotechnologies. Nanosystem Equipment (Tekhnosfera, Moscow, 2006) (in Russian)

    Google Scholar 

  2. U.A. Chapligin (ed.), Nanotechnologies in Electronics (Tekhnosfera, Moscow, 2005), p. 448 (in Russian)

    Google Scholar 

  3. R. Young, I. Ward, F. Scire, The topographiner: an instrument for measuring surface microtopography. Rev. Sci. Instrum. 43, 999 (1972)

    Article  Google Scholar 

  4. G. Binning, H. Rohrer, Scanning tunneling microscope. U.S. Patent 4343993, 10 Aug 1982 (Filed: 12 Sept 1980)

    Google Scholar 

  5. V.K. Nevolin, Probe Nanotechnologies in Electronics (Tekhnosfera, Moscow, 2005), p. 152(in Russian)

    Google Scholar 

  6. G. Binnig, H. Rohrer, Scanning tunneling microscopy. Helv. Phys. Acta 55(6), 726–735 (1982)

    CAS  Google Scholar 

  7. D.I. Blohintsev, Basics of Quantum Mechanics (Nauka, Moscow, 1983) (in Russian)

    Google Scholar 

  8. L.D. Landau, E.M. Lifshits, Theoretical Physics, Quantum Mechanics, vol. 3 (Phizmatlit, Moscow, 2001), p. 804 (in Russian)

    Google Scholar 

  9. V.L. Mironov, Basics of Scanning Probe Microscopy (Technosfera, Moscow, 2004), p. 144(in Russian)

    Google Scholar 

  10. G. Binning, C.F. Quate, Ch. Gerber, Atomic force microscope. Phys. Rev. Lett. 56(9), 93–933 (1986)

    Google Scholar 

  11. Yu.S. Barash, Van der Waals Forces (Nauka, Moscow, 1988), p. 344c

    Google Scholar 

  12. Y. Martin, Wickramasinghe. Magnetic imaging by force microscopy with 1000 Å resolution. Appl. Phys. Lett. 50(20), 1455–1457 (1987)

    Google Scholar 

  13. D. Rugar, H. Mamin, P. Guethner et al., Magnetic force microscopy: general principles and application to longitudinal recording media. J. Appl. Phys. 68(3), 1169–1182 (1990)

    Article  CAS  Google Scholar 

  14. I.E. Tamm, Basics of Electricity Theory (Nauka, Moscow, 1976), p. 616 (in Russian)

    Google Scholar 

  15. G.M. Binnig, D. Smith, Tubular three-coordinate transducer for scanning electron microscope, Devices for scientific researches (1986), p. 152

    Google Scholar 

  16. G.M. Binnig, D. Smith, Single-tube three-dimensional scanner for scanning tunneling microscopy. Rew. Sci. Instrum. 58(8), 1688 (1986)

    Google Scholar 

  17. N.A. Shulga, A.M. Bolkisev, Vibrations of Piezoelectric Bodies (Naukova Dumka, Kiev, 1990), p. 228 (in Russian)

    Google Scholar 

  18. V. Sharapov, A. Vladisauskas, S. Filimonov, Bimorph cylindrical piezoceramic scanner for scanning probe nano-microscopes, Ultragarsas (Ultrasound) 4(64), ISSN 1392–2114 (Technologia, Kaunas, 2009)

    Google Scholar 

  19. V.M. Sharapov, A.N. Ghyrzhy, S.O. Filimonov, Piezoelectric scanner, Patent of UkraineNo 22601 (2007) (in Ukrainian)

    Google Scholar 

  20. A.B. Smirnov, Mechatronics and Robotics. Micro-movement Systems with Piezoelectric Actuators: Teaching Aid (SPbSPU Publishing, St. Petersburg, 2003) (in Russian)

    Google Scholar 

  21. V. Sharapov, A. Vladisauskas, S. Filimonov, Piezoceramic scanners on the basis of planar bimorph piezoelements for scanning probe nanomicroscopes. Ultragarsas (Ultrasound) 1(65) (Technologia, Kaunas, 2010), ISSN 1392–2114

    Google Scholar 

  22. V.M. Sharapov, M.P. Musienko, E.V. Sharapova, in Piezoelectric Sensors, ed. byV.M. Sharapov (Technosphera, Moscow, 2006), p. 632 (in Russian)

    Google Scholar 

  23. V.M. Sharapov et al., in Sensors, ed. by V.M. Sharapov, E.S. Polischuk (Brama, Cherkasy, 2008), p. 1072 (in Russian)

    Google Scholar 

  24. L.A. Ostrovskiy, General Theory Basics of Electric Devices (Energia, Leningrad, 1971), p. 544 (in Russian)

    Google Scholar 

  25. V.M. Sharapov, A.N. Ghyrzhy, A.P. Alpatov, S.A. Filimonov, Piezoscanner, Patent of Ukraine No 22600, Cl. G12B 21/20 H01L 41/00, Bull. No 5 (2007) (in Ukrainian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriy Sharapov .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sharapov, V. (2011). Piezoceramic Scanners for Probe Nanomicroscopes. In: Piezoceramic Sensors. Microtechnology and MEMS. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15311-2_16

Download citation

Publish with us

Policies and ethics