Skip to main content

Introduction

  • Chapter
Ultrasonic Motors

Abstract

Traditional motors based on the electromagnetic principle have been invented and developed for more than one hundred years. As actuators and power sources, the motors have been widely used in many fields all over the world and have made a great contribution to our society. Over the years, the theories, design methods and manufacturing technologies of traditional motors have been developed so successfully that little improvement can be made to them. However, due to advanced science and technology, especially in hi tech products such as spaceships, satellites, launch vehicles, various electronic equipment, and precision instruments, many new requirements for motors have been raised, including a small size, light weight, low noise, no electromagnetic interference, etc. Due to limitations on the principle and structure, traditional motors are difficult to meet these requirements. Many countries in the world strive to explore various new, small, and special motors such as electrostatic motors, ultrasonic motors (USMs), bionic motors, photo thermal motors, shape memory alloy motors, microwave motors, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J Wallaschek. Ultrasonic motor research in Germany—past, present, future. Proceedings of the First International Workshop on Ultrasonic Motors and Actuators. Yokohama, Japan: Tokyo Institute of Technology, 2005.

    Google Scholar 

  2. W Willams, W Brown. Piezoelectric motor. US Patent, 2439499, 1942-08-20.

    Google Scholar 

  3. F J Britten. Britten’s Watch and Clock Maker’s Handbook: Dictionary and Guide. New York: Arco Publishing Co., 1978: 109.

    Google Scholar 

  4. V V Lavrinenko, M Nekrasov. Piezoelectric motor. Soviet Patent, 217509, 1965.

    Google Scholar 

  5. H V Barth. Ultrasonic drive motor. IBM Technical Disclosure Bulletin, 1973, 16(7): 2263.

    Google Scholar 

  6. V Vishnevsky, V Kavertsev, I Kartashev, et al. Piezoelectric motor structures. US Patent, 4019073, 1975-08-12.

    Google Scholar 

  7. P Vasiliev, R Klimavichjus, A Kondratiev, et al. Vibration motor control. UK Patent, GB 2020857A, 1979-11-21.

    Google Scholar 

  8. T Sashida. Trial construction and operation of an ultrasonic vibration driven motor. Oyo Butsiuri, 1982, 51(6): 713–718.

    Google Scholar 

  9. T Sashida. Motor device utilizing ultrasonic oscillation. US Patent, 4562374, 1984-05-16.

    Google Scholar 

  10. Takashi Kenjyo, Nensei Sashida. Introduction of Ultrasonic Motor. Japan: Sougou-Denshi Publisher, 1991. (in Japanese)

    Google Scholar 

  11. A Kumada. A piezoelectric ultrasonic motor. Japanese Journal of Applied Physics, Supplement, 1985, 24(2): 739–741.

    Article  Google Scholar 

  12. Ise Yukihiko. Ultrasonic motor. Journal of the Acoustical Society of Japan, 1987, 43(3): 184–188.

    Google Scholar 

  13. K Uchino. Piezoelectric actuators/ultrasonic motors-their developments and markets. IEEE International Symposium on Applications of Ferroelectrics. PA, USA: University Park, 1994:319–324.

    Google Scholar 

  14. J Wallaschek. Piezoelectric ultrasonic motors. Journal of Intelligence Material Systems and Structure, 1995, 6(1): 71–83.

    Article  Google Scholar 

  15. Tieying Zhou, Shuxiang Dong. Circular ultrasonic vibrator and the micro-motor driven by this vibrator. Chinese Invention Patent, ZL89109320, 1989-12-21. (in Chinese)

    Google Scholar 

  16. M K Kurosawa, O Kodaira, Y Tsuchitoi, et al. Transducer for high speed and large thrust ultrasonic linear motor using two sandwich-type vibrators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1998, 45(5): 1188–1195.

    Article  Google Scholar 

  17. Y Tomikawa, T Ogasawara, T Takano. Ultrasonic motors-constructions /characteristics/ applications. Ferroelectrics, 1989, 91: 163–178.

    Article  Google Scholar 

  18. Kazumasa Onishi. Principle and mechanism of ultrasonic linear actuator. Labor-saving and Robotization, 1990, 112: 165–170. (in Japanese)

    Google Scholar 

  19. M Kurosawa, S Ueha. Hybrid transducer type ultrasonic motor. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1991, 38(2): 89–92.

    Article  Google Scholar 

  20. S Ueha, Y Tomikawa. Ultrasonic Motors-Theory and Applications. USA: Oxford University Press, 1994.

    Google Scholar 

  21. Zheng Tao. Study on Hybrid Ultrasonic Motor Using Longitudinal and Torsional Vibration Modes. Dissertation for the Degree of Doctor of Philosophy. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006. (in Chinese)

    Google Scholar 

  22. M Kurosawa, K Nakamura, T Okamoto. An ultrasonic motor using bending vibrations of a short cylinder. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1989, 36(5): 517–521.

    Article  Google Scholar 

  23. T Morita, M K Kurosawa, T Higuchi. A cylindrical micro-ultrasonic motor using PZT thin film deposited by single process hydrothermal method (Diameter 2.4mm, L10mm Stator transducer). IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1998, 45(5): 1178–1187.

    Article  Google Scholar 

  24. T Morita, M K Kurosawa, T Higuchi. A cylindrical shaped micro ultrasonic motor utilizing PZT thin film (Diameter 1.4mm and L5.0mm stator transducer). Sensors and Actuators A: Physical, 2000, 83(3): 225–230.

    Article  Google Scholar 

  25. Hua Zhu, Chunsheng Zhao. The review of rotational ultrasonic micro-motor. Piezoelectrics & Acoustooptics, 2005, 27(6): 627–630, 642. (in Chinese)

    Google Scholar 

  26. T Sashida, T Kenjo. An Introduction to Ultrasonic Motors. Oxford: Clarendon Press, 1993.

    Google Scholar 

  27. Tieying Zhou. An integrated optical auto-focus system driven by a nut-type USM. 5th International Workshop on Piezoelectric Materials and Applications in Actuators. PA, USA: Pann. State University, 2008.

    Google Scholar 

  28. A Kumada. A piezoelectric ultrasonic motor. Japanese Journal of Applied Physics, Supplement, 1985, 24(2): 739–741.

    Article  Google Scholar 

  29. P Bouchilloux, B Koc, K Uchino. New concept for resonant longitudinal-shear ultrasonic motor. Materials for Smart Systems, Symposium (Materials Research Society Proceedings), 2000, 604: 71–78.

    Google Scholar 

  30. A Henke, M A Kummel, J Wallaschek. A piezoelectrically driven wire feeding system for high performance wedge-wedge-bonding machines. Mechatronics, 1999, 9(7): 757–767.

    Article  Google Scholar 

  31. Chunsheng Zhao. Ultrasonic motor techniques for 21st century. Engineering Science, 2002, 4(2): 86–91. (in Chinese)

    Google Scholar 

  32. Chunsheng Zhao. Some proposals for development of ultrasonic motor techniques in China. Micromotors Servo Technique, 2005, 8: 64–69. (in Chinese)

    Google Scholar 

  33. S S Lih, B C Yoseph, W Grandia. Rotary ultrasonic motors actuated by traveling flexural waves. SPIE, 2004, 3041: 912–917.

    Article  Google Scholar 

  34. S Dong, L Yan, N Wang, et al. A small, linear, piezoelectric ultrasonic cryomotor. Applied Physics Letters 86, 053501 (2005).

    Article  Google Scholar 

  35. A M Flynn, L S Tavrow, S F Bart, et al. Piezoelectric micromotors for microrobots. Journal of Microelectromechanical System, 1992, 1(1): 44–51.

    Article  Google Scholar 

  36. A Fujimoto, M Sakata, M Hirano, et al. Miniature electrostatic motor. Sensor and Actuators A, 1990, 24(1): 43–46.

    Article  Google Scholar 

  37. B Koc, S Cagatay, K Uchino. A piezoelectric motor using two orthogonal bending modes of a hollow cylinder. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2002, 4(49): 495–500.

    Article  Google Scholar 

  38. T Tanikawa, T Arai. Development of a micro-manipulation system having a two-fingered micro-hand. IEEE Trans. Robot. Autom., 1999, 15: 152–162.

    Article  Google Scholar 

  39. T Higuchi. Automatic micro manipulation system for cell manipulation. [2007-05-23]. http://www.intellect.pe.u-tokyo.ac.jp/research/manipulater/manipulator_e.html.

    Google Scholar 

  40. T Shigematsu, M Kurosawa, K Asai. Sub-nanometer stepping drive of surface acoustic ultrasonic motor. IEEE Int. Conf. Nanotechnology. San Francisco, CA, 2003, 2: 299–302.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Science Press Beijing and Springer Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhao, C. (2011). Introduction. In: Ultrasonic Motors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15305-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15305-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15304-4

  • Online ISBN: 978-3-642-15305-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics