The Family of Conceptual Neighborhood Graphs for Region-Region Relations

  • Max J. Egenhofer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6292)

Abstract

This paper revisits conceptual neighborhood graphs for the topological relations between two regions, in order to bridge from the A-B-C neighborhoods defined for interval relations in R1 to region relations in R2 and on the sphere S2. A categorization of deformation types—built from same and different positions, orientations, sizes, and shapes—gives rise to four different neighborhood graphs. They include transitions that are constrained by the regions’ geometry, yielding some directed, not undirected neighborhood graphs. Two of the four neighborhood graphs correspond to type B and C. The lattice of conceptual neighborhood graphs captures the relationships among the graphs, showing completeness under union and intersection.

Keywords

Spatial reasoning topological relations 9-intersection conceptual neighborhood graphs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexandroff, P.: Elementary Concepts of Topology. Dover, Mineola (1961)MATHGoogle Scholar
  2. 2.
    Allen, J.: Maintaining Knowledge About Temporal Intervals. Communications of the ACM 26(11), 832–843 (1983)MATHCrossRefGoogle Scholar
  3. 3.
    Bruns, H., Egenhofer, M.: Similarity of Spatial Scenes. In: Kraak, M.J., Molenaar, M. (eds.) Seventh International Symposium on Spatial Data Handling (SDH 1996), vol. 4A, pp. 31–42 (1996)Google Scholar
  4. 4.
    Clementini, E., Di Felice, P.: An Algebraic Model for Spatial Objects with Indeterminate Boundaries. In: Burrough, P., Frank, A. (eds.) Geographic Objects with Indeterminate Boundaries, pp. 155–170. Taylor & Francis, Bristol (1996)Google Scholar
  5. 5.
    Cohn, A., Bennett, B., Gooday, J., Gotts, N.: Qualitative Spatial Representation and Reasoning with the Region Connection Calculus. GeoInformatica 1(3), 1–44 (1997)CrossRefGoogle Scholar
  6. 6.
    Cohn, A., Gotts, N.: The ‘Egg-Yolk’ Representation of Regions with Indeterminate Boundaries. In: Burrough, P., Frank, A. (eds.) Geographic Objects with Indeterminate Boundaries, pp. 171–187. Taylor & Francis, Bristol (1996)Google Scholar
  7. 7.
    Cohn, A., Hazarika, S.: Qualitative Spatial Representation and Reasoning: An Overview. Fundamenta Informaticae 46(1-2), 2–32 (2001)MathSciNetGoogle Scholar
  8. 8.
    Cohn, A., Renz, J.: Qualitative Spatial Representation and Reasoning. In: van Hermelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation, pp. 551–596 (2008)Google Scholar
  9. 9.
    Egenhofer, M.: Query Processing in Spatial-Query-by Sketch. Journal of Visual Languages and Computing 8(4), 403–424 (1997)CrossRefGoogle Scholar
  10. 10.
    Egenhofer, M.: Deriving the Composition of Binary Topological Relations. Journal of Visual Languages and Computing 5(2), 133–149 (1994)CrossRefGoogle Scholar
  11. 11.
    Egenhofer, M.: Spatial SQL: A Query and Presentation Language. IEEE Transactions on Knowledge and Data Engineering 6(1), 86–95 (1994)CrossRefGoogle Scholar
  12. 12.
    Egenhofer, M.: Spherical Topological Relations. Journal on Data Semantics III, 25–49 (2005)CrossRefGoogle Scholar
  13. 13.
    Egenhofer, M., Al-Taha, K.: Reasoning about Gradual Changes of Topological Relationships. In: Frank, A.U., Formentini, U., Campari, I. (eds.) GIS 1992. LNCS, vol. 639, pp. 196–219. Springer, Heidelberg (1992)Google Scholar
  14. 14.
    Egenhofer, M., Franzosa, R.: Point-Set Topological Relations. International Journal of Geographical Information Systems 5(2), 161–174 (1991)CrossRefGoogle Scholar
  15. 15.
    Egenhofer, M., Herring, J.: A Mathematical Framework for the Definition of Topological Relationships. In: Brassel, K., Kishimoto, H. (eds.) Fourth International Symposium on Spatial Data Handling, pp. 803–813 (1990)Google Scholar
  16. 16.
    Egenhofer, M., Herring, J.: Categorizing Binary Topological Relationships Between Regions, Lines, and Points in Geographic Databases, Department of Surveying Engineering, University of Maine, Orono, ME (1991)Google Scholar
  17. 17.
    Egenhofer, M., Sharma, J., Mark, D.: A Critical Comparison of the 4-Intersection and the 9-Intersection Models for Spatial Relations: Formal Analysis. In: McMaster, R., Armstrong, M. (eds.) Autocarto 11, Minneapolis, MD, pp. 63–71 (1993)Google Scholar
  18. 18.
    Freksa, C.: Temporal Reasoning based on Semi-Intervals. Artificial Intelligence 54(1), 199–227 (1992)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Freeman, J.: The Modeling of Spatial Relations. Computer Graphics and Image Processing 4(2), 156–171 (1975)CrossRefGoogle Scholar
  20. 20.
    Galton, A.: Spatial and Temporal Knowledge Representation. Earth Science Informatics 2(3), 169–187 (2009)CrossRefGoogle Scholar
  21. 21.
    Klippel, A., Li, R.: The Endpoint Hypothesis: A Topological-Cognitive Assessment of Geographic Scale Movement Patterns. In: Hornsby, K.S., Claramunt, C., Denis, M., Ligozat, G. (eds.) COSIT 2009. LNCS, vol. 5756, pp. 177–194. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Kurata, Y., Egenhofer, M.: The Head-Body-Tail Intersection for Spatial Relations Between Directed Line Segments. In: Raubal, M., Miller, H.J., Frank, A.U., Goodchild, M.F. (eds.) GIScience 2006. LNCS, vol. 4197, pp. 269–286. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Mark, D., Egenhofer, M.: Modeling Spatial Relations between Lines and Regions: Combining Formal Methods and Human Subjects Testing. Cartography and Geographic Information Systems 21(4), 195–212 (1994)Google Scholar
  24. 24.
    Randell, D., Cui, Z., Cohn, A.: A Spatial Logic based on Regions and Connection. In: Nebel, B., Rich, C., Swartout, W. (eds.) 3rd International Conference on Principles of Knowledge Representation and Reasoning KR 1992, pp. 165–176 (1992)Google Scholar
  25. 25.
    Randell, D., Cohn, A., Cui, Z.: Computing Transitivity Tables: A Challenge for Automated Theoremprovers. In: 11th International Conference on Automated Deduction (CADE 1992), pp. 786–790 (1992)Google Scholar
  26. 26.
    Retz-Schmidt, G.: Various Views on Spatial Prepositions. AI Magazine 9(2), 95–105 (1988)Google Scholar
  27. 27.
    Reis, R., Egenhofer, M., Matos, J.: Conceptual Neighborhoods of Topological Relations between Lines. In: Ruas, A., Gold, C. (eds.) The 13th International Symposium on Spatial Data Handling (SDH 2008), Montpellier, France, pp. 557–574. Springer, Heidelberg (2008)Google Scholar
  28. 28.
    Schlieder, C.: Reasoning About Ordering. In: Kuhn, W., Frank, A.U. (eds.) COSIT 1995. LNCS, vol. 988, pp. 341–349. Springer, Heidelberg (1995)Google Scholar
  29. 29.
    Schneider, M., Behr, T.: Topological Relationships between Complex Spatial Objects. ACM Transactions on Database Systems 31(1), 39–81 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Max J. Egenhofer
    • 1
    • 2
  1. 1.National Center for Geographic Information and Analysis 
  2. 2.Department of Spatial Information Science and Engineering Department of Computer ScienceUniversity of MaineOronoUSA

Personalised recommendations