Visual Exploration of Eye Movement Data Using the Space-Time-Cube

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6292)


Eye movement recordings produce large quantities of spatio-temporal data, and are more and more frequently used as an aid to gain further insight into human thinking in usability studies in GIScience domain among others. After reviewing some common visualization methods for eye movement data, the limitations of these methods are discussed. This paper proposes an approach that enables the use of the Space-Time-Cube (STC) for representation of eye movement recordings. Via interactive functions in the STC, spatio-temporal patterns in eye movement data could be analyzed. A case study is presented according to proposed solutions for eye movement data analysis. Finally, the advantages and limitations of using the STC to visually analyze eye movement recordings are summarized and discussed.


Eye movement analysis Space-Time-Cube Usability evaluation Spatio-temporal data 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fabrikant, S.I., Rebich-Hespanaba, S., Andrienko, N., et al.: Novel Method to Measure Inference Affordance in Static Small-Multiple Map Dispalys Representating Dynamic Process. The Cartographic Journal 45(3), 201–215 (2008)CrossRefGoogle Scholar
  2. 2.
    Çöltekin, A., Heil, B., Garlandini, S., et al.: Evaluating the Effectiveness of Interactive Map Interface Designs: A Case Study Integrating Usability Metrics with Eye-Movement Analysis Cartography and Geographic Information Science.  36(1), 5–17 (2009)Google Scholar
  3. 3.
    Brodersen, L., Anderson, H.H.K., Weber, S.: Applying Eye-Movement Tracking for the Study of Map Perception and Map Design. Kort & Matrikelstyrelsen, Denmark (2002)Google Scholar
  4. 4.
    Fuhrmann, S., Ahonen-Rainio, P., Edsall, R., Fabricant, S.I., Koua, E.L., Tobon, C.: Making useful and useable geovisualization:design and evaluation issues. Exploring Geovisualization (2004)Google Scholar
  5. 5.
    Haklay, M., Zafiri, A.: Usability engineering for GIS: Learning from a screenshot. Special Issue on Use and User Issues The Cartographic Journal 45(2), 87–97 (2008)Google Scholar
  6. 6.
    Goldberg, J.H., Kotval, X.P.: Computer interface evaluation using eye movements: methods and constructs. International Journal of Industrial Ergonomics 24, 631–645 (1999)CrossRefGoogle Scholar
  7. 7.
    Cowen, L.: An Eye Movement Analysis of Web-Page Usability. Lancaster University, UK (2001)Google Scholar
  8. 8.
    Gitelman, D.R.: ILAB: A prog ram for postexperimental eye movement analysis. Behavior Research Methods, Instruments, & Computers 34(4), 605–612 (2002)Google Scholar
  9. 9.
    Ponsoda, V., Scott, D., Findlay, J.M.: A probability vector and transition matrix analysis of eye movements during visual search. Acta Psycholgica 88, 167–185 (1995)CrossRefGoogle Scholar
  10. 10.
    Scinto, L., Barnette, B.D.: An algorithm for determining clusters, pairs and singletons in eye-movement scan-path records. Behavior Research Methods, Instruments, & Computers 18(1), 41–44 (1986)Google Scholar
  11. 11.
    Hägerstrand, T.: Spatial Process. University of Chicago, Chicago (1967)Google Scholar
  12. 12.
    Garlandini, S., Fabrikant, S.I.: Evaluating the Effectiveness and Efficiency of Visual Variables for Geographic Information Visualization. In: Hornsby, K.S., Claramunt, C., Denis, M., Ligozat, G. (eds.) COSIT 2009. LNCS, vol. 5756, pp. 195–211. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Fabrikant, S.I., Rebich-Hespanha, S., Hegarty, M.: Cognitively inspired and perceptually salient graphic displays for efficient spatial inference making Annals of the Association of American Geographers  100(1), 13–29 (2010)Google Scholar
  14. 14.
    Jacob, R., Karn, K.: Eye tracking in humancomputer interaction and usability research: Ready to deliver the promises. In: Hyönä, J., Radach, R., Deubel, H. (eds.) The Mind’s Eye: Cognitive and Applied Aspects of Eye Movement Research, pp. 573–605. Elsevier Ltd., Amsterdam (2003)Google Scholar
  15. 15.
    Henderson, J.M., Ferreira, F.: Scene Perception for Psycholinguists. In: Henderson, J.M., Ferreira, F. (eds.) The Integration of Language, Vision, and Action: Eye Movements and the Visual World. Psychology Press, New York (2004)Google Scholar
  16. 16.
    Rayner, K.: Eye Movements and Visual Cognition: Scene Perception and Reading. Springer, New York (1992)Google Scholar
  17. 17.
    Wade, N., Tatler, B.: The Moving Tablet of the Eye: The Origins of Modern Eye Movement Research. Oxford University Press, Oxford (2005)Google Scholar
  18. 18.
    Keehner, M., Hegarty, M., Cohen, C.A., Khooshabeh, P., Montello, D.R.: Spatial reasoning with external visualizations: What matters is what you see, not whether you interact. Cognitive Science 32, 1099–1132 (2008)CrossRefGoogle Scholar
  19. 19.
    Goldberg, J.H., Schryver, J.C.: Eye-gaze determination of user intent at the computer interface. In: Findlay, J.M., Walker, R., Kentridge, R.W. (eds.) Eye Movement Research: Mechanisms, Processes and Applications, pp. 491–502. North-Holland Press, Amsterdam (1993)Google Scholar
  20. 20.
    Mackworth, N.H.: Stimulus density limits the useful field of view. In: Monty, R.A., Senders, J.W. (eds.) Eye Movements and Psychological Processes. Erlbaum, Hillsdale (1976)Google Scholar
  21. 21.
    Robinson, G.H.: Dynamics of the eye and head during movement between displays: A qualitative and quantitative guide for designers. Human Factors 21(3), 343–352 (1979)Google Scholar
  22. 22.
    Crowe, E.C., Narayanan, N.H.: Comparing interfaces based on what users watch and do. In: Proceedings Eye Tracking Research and Applications Symposium, pp. 29–36. Association for Computing Machinery, New York (2000)CrossRefGoogle Scholar
  23. 23.
    Benel, D.C.R., Ottens, D., Horst, R.: Use of an eye tracking system in the usability laboratory. In: Human Factors Society 35th Annual Meeting. Human Factors and Ergonomics Society, Santa Monica (1991)Google Scholar
  24. 24.
    Jacob, R.J.K.: The use of eye movements in human-computer interaction techniques: what you look at is what you get. computer—human interaction 9(2), 152–169 (1991)Google Scholar
  25. 25.
    Ellis, S., Candrea, R., Misner, J., et al.: Windows to the soul? What eye movements tell us about software usability. In: Usability Professionals’ Association Conference 1998, pp. 151–178 (1998)Google Scholar
  26. 26.
    Just, M.A., Carpenter, P.A.: Eye fixations and cognitive processes. Cognitive Psychology 8, 211–222 (1976)CrossRefGoogle Scholar
  27. 27.
    Loftus, G.R., Mackworth, N.H.: Cognitive determinants of fixation location during picture viewing. Journal of Experimental Psychology: Human Perception and Performance 4(4), 565–572 (1978)CrossRefGoogle Scholar
  28. 28.
    Steincke, T.R.: Eye Movement Studies In Cartography And Related Fields Cartographica. The International Journal for Geographic Information and Geovisualization 24(2), 40–73 (1987)CrossRefGoogle Scholar
  29. 29.
    Belofsky, M.S., Lyon, D.R.: Modeling eye movement sequences using conceptual clustering techniques. Air Force Systems, Brooks Air Force Base: Air Force Human Resources Laboratory (1988)Google Scholar
  30. 30.
    Krose, B.J.A., Burbeck, C.A.: Spatial interactions in rapid pattern discrimination. Spatial Vision, 4211–4222 (1989)Google Scholar
  31. 31.
    Pillalamarri, R.S., Barnette, B.D., Birkmire, D., et al.: Cluster: a program for the identification of eye-fixation-cluster characteristics. Behavior Research Methods, Instruments, and Computers 25(1), 9–15 (1993)Google Scholar
  32. 32.
    Fabrikant, S.I., Hespanaha, S.R., Montello, D.R., et al.: A visual analytics approach to evaluate inference affordance from animated map displays. In: GIScience 2008 Pre-Conference workshop on Geospatial Visual Analytics, Park City, UT (2008)Google Scholar
  33. 33.
    Kraak, M.-J.: Cartography: Visualization of geospatial data, 2nd edn. (1996)Google Scholar
  34. 34.
    Hägerstrand, T.: How about People in Regional Science? Papers of the Regional Science Association 24, 7–21 (1970)Google Scholar
  35. 35.
    MacEachren, A.M.: How Maps Work: Representation, Visualization, and Design. Guilford press, New York (1995)Google Scholar
  36. 36.
    Andrienko, N., Andrienko, G.: Interactive maps for visual data exploration. International Journal Geographical Information Science 13, 355–374 (1999)CrossRefGoogle Scholar
  37. 37.
    Hedley, N.R., Drew, C.H., Lee, A.: Hagerstrand Revisited: Interactive Space-Time Visualizations of Complex Spatial Data. Informatica: International Journal of Computing and Informatics (2), 155–168 (1999)Google Scholar
  38. 38.
    Kraak, M.-J.: Geovisualization illustrated. ISPRS Journal of Photogrammetry and Remote Sensing (5-6), 390–399 (2003)Google Scholar
  39. 39.
    Gatalsky, P., Andrienko, N., Andrienko, G.: Interactive Analysis of Event Data Using Space-Time Cube. In: Eighth International Conference on Information Visualisation (IV 2004), London, England, pp. 145–152 (2004)Google Scholar
  40. 40.
    Kraak, M.-J.: A visualization environment for the space-time-cube. Geo-Information Processing. Enschede (2004)Google Scholar
  41. 41.
    Kraak, M.-J.: Timelines, Temporal Resolution, Themporal Zoom and Time Geography. In: Proceedings 22nd International Cartographic Conference, A Coruna Spain (2005)Google Scholar
  42. 42.
    Kraak, M.J.: Geovisualization and time - new opportunities for the space-time cube. In: Dogde, M., Turner, M. (eds.) Geographic Visualization: Concepts, Tools and Applications, pp. 293–306. Wiley, New York (2008)CrossRefGoogle Scholar
  43. 43.
    Johnson, I.: Mapping the fourth dimension: the TimeMap project. In: Dingwall, L., Exon, S., Gaffney, V., Laflin, S., van Leusen, M. (eds.) Archaeology in the Age of the Internet British Archaeological Reports International Series, vol. 21 (1999)Google Scholar
  44. 44.
    Forer, P., Huisman, O.: Computational agents and urban life spaces: a preliminary realisation of the time-geography of student lifestyles. In: Third International Conference on GeoComputation, Bristol (1998)Google Scholar
  45. 45.
    Kraak, M.J., Madzudzo, P.: Space Time Visualization for Epidemiological Research. In: Proceedings 23e International Cartographic Conference, Moscow (2007)Google Scholar
  46. 46.
    Kraak, M.-J., He, N.: Organizing the neo-geography collections with annotated space-time paths. In: The 24th International Cartographic Conference, Chile (2009)Google Scholar
  47. 47.
    Shneiderman, B.: The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations. In: Proceedings of the 1996 IEEE Symposium on Visual Languages, pp. 336–343. IEEE Computer Society Press, Piscataway (1996)CrossRefGoogle Scholar
  48. 48.
    Peuquet, D.J.: Representations of Space and Time. Guilford, New York (2002)Google Scholar
  49. 49.
    Li, X., Kraak, M.-J.: he Time Wave. A New Method of Visual Exploration of Geo-data in Time–space. The Cartographic Journal 45(3), 1–9 (2008)CrossRefGoogle Scholar
  50. 50.
  51. 51.
  52. 52.
    Yarbus, A.L.: Eye Movements and Vision. Plenum Press, New York (1967)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.ITC- University of TwenteEnschedeThe Netherlands
  2. 2.College of the Earth Science and ResourceChang’an UniversityXi’anChina
  3. 3.Department of GeographyUniversity of ZurichZurichSwitzerland

Personalised recommendations