Collaborative Generalisation: Formalisation of Generalisation Knowledge to Orchestrate Different Cartographic Generalisation Processes

  • Guillaume Touya
  • Cécile Duchêne
  • Anne Ruas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6292)

Abstract

Cartographic generalisation seeks to summarise geographical information from a geographic database to produce a less detailed and readable map. This paper deals with the problem of making different automatic generalisation processes collaborate to generalise a complete map. A model to orchestrate the generalisation of different areas (cities, countryside, mountains) by different adapted processes is proposed. It is based on the formalisation of cartographic knowledge and specifications into constraints and rules sets while processes are described to formalise their capabilities. The formalised knowledge relies on generalisation domain ontology. For each available generalisation process, the formalised knowledge is then translated into process parameters by an adapted translator component. The translators allow interoperable triggers and allow the choice of the proper process to apply on each part of the space. Applications with real processes illustrate the usability of the proposed model.

Keywords

cartographic generalisation constraints ontology interoperability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Touya, G.: First thoughts for the orchestration of generalisation methods on heterogeneous landscapes. In: 11th ICA Workshop on generalisation and multiple representation, Montpellier, France (2008), http://aci.ign.fr/montpellier2008/papers/01_Touya.pdf
  2. 2.
    McMaster, R.B., Shea, K.S.: Cartographic generalization in digital environment: A framework for implementation in a gis. In: GIS/LIS 1988, pp. 240–249 (1988)Google Scholar
  3. 3.
    Ruas, A., Duchêne, C.: A Prototype Generalisation System Based on the Multi-Agent System Paradigm. In: Mackaness, W., Ruas, A., Sarjakoski, T. (eds.) The Generalisation of Geographic Information: Models and Applications, pp. 269–284. Elsevier, Amsterdam (2007)CrossRefGoogle Scholar
  4. 4.
    Harrie, L., Sarjakoski, T.: Simultaneous Graphic Generalization of Vector Data Sets. Geoinformatica 6(3), 233–261 (2002)MATHCrossRefGoogle Scholar
  5. 5.
    Touya, G.: A Road network Selection Process based on Data Enrichment and Structure Detection. In: Transactions in GIS (in press, 2010)Google Scholar
  6. 6.
    Weiss, G.: Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. MIT Press, Cambridge (2000)Google Scholar
  7. 7.
    Regnauld, N.: Evolving from automating existing map production systems to producing maps on demand automatically. In: 10th ICA Workshop on Generalisation and Multiple Representation (2007), http://aci.ign.fr/BDpubli/moscow2007/Regnauld-ICAWorkshop.pdf
  8. 8.
    Duchêne, C., Gaffuri, J.: Combining Three Multi-agent Based Generalisation Models: AGENT, CartACom and GAEL. In: Ruas, A., Gold, C. (eds.) Headway in Spatial Data Handling, 13th International Symposium on Spatial Data Handling. LNG&C, pp. 277–296. Springer, Heidelberg (2008)Google Scholar
  9. 9.
    Bader, M., Barrault, M.: Cartographic Displacement in Generalization: Introducing Elastic Beams. In: 4th ICA workshop on progress in automated map generalisation, Beijing (2001), http://aci.ign.fr/BDpubli/pbeijing2001/papers/bader_barraultv1.pdf
  10. 10.
    Chaudhry, O.Z., Mackaness, W.A.: Creating mountains out of mole hills: Automatic identification of hills and ranges using morphometric analysis. Transactions in GIS 12(5), 567–589 (2008)Google Scholar
  11. 11.
    Gaffuri, J.: Three reuse example of a generic deformation model in map generalisation. In: 24th International Cartographic Conference, Santiago, Chile (2009)Google Scholar
  12. 12.
    Ruas, A.: Automating the generalisation of geographical data: the age of maturity? In: 20th International Cartographic Conference, Beijing, China, pp. 1943–1953 (2001)Google Scholar
  13. 13.
    Lüscher, P., Weibel, R., Mackaness, W.A.: Where is the terraced house? On the use of ontologies for recognition of urban concepts in cartographic databases. In: Ruas, A., Gold, C. (eds.) Headway in Spatial Data Handling, pp. 449–466 (2008)Google Scholar
  14. 14.
    Abadie, N., Gesbert, N., Mustière, S.: Création d’une ontologie à partir des spécifications textuelles pour l’intégration des bases de données géographiques. In : 17èmes journées Ingénierie des Connaissances, Nantes (2006)Google Scholar
  15. 15.
    Mustière, S.: Apprentissage supervisé pour la généralisation cartographique. PhD thesis, Université Pierre et Marie Curie (2001)Google Scholar
  16. 16.
    Horrocks, I.: Ontologies and the semantic web. Commun. ACM 51(12), 58–67 (2008)CrossRefGoogle Scholar
  17. 17.
    Beard, K.: Constraints on rule formation. In: Buttenfield, B., McMaster, R. (eds.) Map Generalization, pp. 121–135. Longman (1991)Google Scholar
  18. 18.
    Burghardt, D., Schmid, S., Stöter, J.: Investigations on cartographic constraint formalisation. In: 10th ICA Workshop on Generalisation and Multiple Representation, Moscow (2007), http://aci.ign.fr/BDpubli/moscow2007/Burghardt-ICAWorkshop.pdf
  19. 19.
    Stoter, J.E., Morales, J.M., Lemmens, R.L.G., Meijers, B.M., van Oosterom, P.J.M., Quak, C.W., Uitermark, H.T., van den Brink, L.: A Data Model for Multi-scale Topographical Data. In: Ruas, A., Gold, C. (eds.) Headway in Spatial Data Handling, pp. 233–254 (2008)Google Scholar
  20. 20.
    Filter Encoding Implementation Specification, http://www.opengeospatial.org/standards
  21. 21.
    Ruas, A., Plazanet, C.: Strategies for Automated Generalization. In: 7th International Symposium on Spatial Data Handling, Delft, Netherlands, pp. 319–336 (1996)Google Scholar
  22. 22.
    Lemarié, C.: Generalisation process for top100: research in generalisation brought to fruition. In: 5th ICA Workshop on progress in automated map generalisation (2003)Google Scholar
  23. 23.
    Lutz, M.: Ontology-Based Descriptions for Semantic Discovery and Composition of Geoprocessing Services. GeoInformatica 11(1), 1–36 (2007)CrossRefGoogle Scholar
  24. 24.
    Bucher, B., Jolivet, L.: Acquiring service oriented descriptions of GI processing software from experts. In: 11th AGILE International Conference, Girona, Spain (2008)Google Scholar
  25. 25.
    Lemmens, R.: Lost and found, the importance of modelling map content semantically. In: Peterson, M. (ed.) International Perspectives on Maps and the Internet, pp. 377–396 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Guillaume Touya
    • 1
  • Cécile Duchêne
    • 1
  • Anne Ruas
    • 1
  1. 1.Laboratoire COGIT, IGNSaint-Mandé CedexFrance

Personalised recommendations