Qualitative Change to 3-Valued Regions

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6292)


Regions which evolve over time are a significant aspect of many phenomena in the natural sciences and especially in geographic information science. Examples include areas in which a measured value (e.g. temperature, salinity, height, etc.) exceeds some threshold, as well as moving crowds of people or animals. There is already a well-developed theory of change to regions with crisp boundaries. In this paper we develop a formal model of change for more general 3-valued regions. We extend earlier work which used trees to represent the topological configuration of a system of crisp regions, by introducing trees with an additional node clustering operation. One significant application for the work is to the decentralized monitoring of changes to uncertain regions by wireless sensor networks. Decentralized operations required for monitoring qualitative changes to 3-valued regions are determined and the complexity of the resulting algorithms is discussed.


qualitative spatial reasoning uncertainty topological change 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahmed, N., Kanhere, S., Ija, S.: The Holes Problem in Wireless Sensor Networks: A Survey. Mobile Computing and Communications Review 9(2), 4–18 (2005)CrossRefGoogle Scholar
  2. 2.
    Antoine-Santoni, A., Santucci, J., de Gentili, E., Costa, B.: Using Wireless Sensor Network for Wildfire Detection. A Discrete Event Approach of Environmental Monitoring Tool. In: Proceedings of the First International Symposium on Environmental Identities and Mediterranean Area (ISEIMA 2006), pp. 115–120. IEEE Computer Society Press, Los Alamitos (2007)Google Scholar
  3. 3.
    Automated Local Evaluation in Real-Time—ALERT (accessed on 01/10/2010),
  4. 4.
    Cohn, A., Gotts, N.: The ‘Egg-Yolk’ Representation of Regions with Indeterminate Boundaries. In: Burrough, P., Frank, A. (eds.) Geographic Objects with Undetermined Boundaries, pp. 171–187. Taylor and Francis, Bristol (1996)Google Scholar
  5. 5.
    Duckham, M., Drummond, J.: Assessment of error in digital vector data using fractal geometry. International Journal of Geographical Information Science 14(1), 67–84 (2000)CrossRefGoogle Scholar
  6. 6.
    Duckham, M., Nussbaum, D., Sack, J.-R., Santoro, N.: Efficient, decentralized computation of the topology of spatial regions. IEEE Transactions on Computers (submitted)Google Scholar
  7. 7.
    Duckham, M., Nittel, S., Worboys, M.: Monitoring dynamic spatial fields using responsive geosensor networks. In: ACM-GIS 2005, Bremen, Germany, pp. 51–60 (2005)Google Scholar
  8. 8.
    Farah, C., Zhong, C., Worboys, M., Nittel, S.: Detecting topological change using a wireless sensor network. In: Cova, T.J., Miller, H.J., Beard, K., Frank, A.U., Goodchild, M.F. (eds.) GIScience 2008. LNCS, vol. 5266, pp. 55–69. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Ibrahim, Z., Tawik, A.: Spatio-temporal Reasoning for Vague Regions. In: Canadian AI Conference, pp. 308–321 (2004)Google Scholar
  10. 10.
    Ibrahim, Z., Tawik, A.: A Qualitative Spatio-temporal Abstraction of a Disaster Space. In: Baresi, L., Fraternali, P., Houben, G.-J. (eds.) ICWE 2007. LNCS, vol. 4607, pp. 274–281. Springer, Heidelberg (2007)Google Scholar
  11. 11.
    ISO. ISO/TC 211/WG 2, ISO/CD 19107 Geographic information—spatial schema. Technical report, International Standards Organization (2003)Google Scholar
  12. 12.
    Jiang, J., Worboys, M.: Detecting Basic Topological Changes in Sensor Networks by Local Aggregation. In: 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM GIS 2008 (2008)Google Scholar
  13. 13.
    Jiang, J., Worboys, M.: Event-based topology for dynamic planar areal objects. International Journal of Geographic Information Science 23(1), 33–60 (2009)CrossRefGoogle Scholar
  14. 14.
    Li, Y., Wang, Z., Song, Y.: Wireless Sensor Network Design for Wildfire Monitoring. In: Proceedings of the 6th World Congress on Intelligent Control and Automation (WCICA 2006), Dalian, China, June 21-23, pp. 109–113. IEEE, Los Alamitos (2006)Google Scholar
  15. 15.
    Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Mateo (1996)zbMATHGoogle Scholar
  16. 16.
    Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., Anderson, J.: Wireless Sensor Networks for Habitat Monitoring. In: First ACM International Workshop on Wireless Sensor Networks and Applications (WSNA 2002), Atlanta, GA (2002)Google Scholar
  17. 17.
    Muller, P.: Topological Spatio-temporal Reasoning and Representation. Computational Intelligence 18(3), 420–450 (2002)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Randell, D., Cui, Z., Cohn, A.: A Spatial Logic Based on Regions and Connection. In: Nebel, B., Rich, C., Swartout, W. (eds.) KR 1992. Principles of Knowledge Representation and Reasoning: Proceedings of the Third International Conference, San Mateo, pp. 165–176. Morgan Kaufmann, San Francisco (1992)Google Scholar
  19. 19.
    Sadeq, M.J.: In. network detection of topological change of regions with a wireless sensor network. PhD thesis, University of Melbourne (2009)Google Scholar
  20. 20.
    Sadeq, M.J., Duckham, M.: Decentralized area computation for spatial regions. In: GIS 2009: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, New York, pp. 432–435 (2009)Google Scholar
  21. 21.
    Umer, M., Kulik, L., Tanin, E.: Spatial Interpolation in Wireless Sensor Networks: Localized Algorithms for Variogram Modeling and Kriging. Geoinformatica 14, 101–134 (2010)CrossRefGoogle Scholar
  22. 22.
    Werner-Allen, G., Johnsnon, J., Ruiz, M., Lees, J., Welsh, M.: Monitoring Volcanic Eruptions with Wireless Sensor Network. In: Proceedings of the second European Workshop on Wireless Sensor Networks, EWSN 2005 (2005)Google Scholar
  23. 23.
    Volcano Sensorweb, (accessed on 01/10/2010)
  24. 24.
    Worboys, M.F., Duckham, M.: GIS: A Computing Perspective, 2nd edn. CRC Press, Boca Raton (2004)Google Scholar
  25. 25.
    Worboys, M.F., Duckham, M.: Monitoring qualitative spatiotemporal change for geosensor networks. International Journal of Geographical Information Science 20(10), 1087–1108 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of GeomaticsUniversity of MelbourneVictoriaAustralia
  2. 2.School of ComputingUniversity of LeedsLeedsUK
  3. 3.Department of Spatial Information Science and EngineeringUniversity of MaineOronoUSA

Personalised recommendations