Detecting Change in Snapshot Sequences

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6292)


Wireless sensor networks are deployed to monitor dynamic geographic phenomena, or objects, over space and time. This paper presents a new spatiotemporal data model for dynamic areal objects in sensor networks. Our model supports for the first time the analysis of change in sequences of snapshots that are captured by different granularity of observations, and our model allows both incremental and non-incremental changes. This paper focuses on detecting qualitative spatial changes, such as merge and split of areal objects. A decentralized algorithm is developed, such that spatial changes can be efficiently detected by in-network aggregation of decentralized datasets.


wireless sensor networks spatiotemporal data models decentralized algorithms qualitative spatial changes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Duckham, M., Nittel, S., Worboys, M.F.: Monitoring dynamic spatial fields using responsive geosensor networks. In: Proceedings of 13th Annual ACM International Workshop on Geographic Information Systems (GIS 2005), pp. 51–60 (2005)Google Scholar
  2. 2.
    Galton, A.: Qualitative Spatial Change. Oxford University Press, Oxford (2000)Google Scholar
  3. 3.
    Galton, A.: Fields and objects in space, time, and space-time. Spatial Cognition and Computation 4(1), 39–67 (2004)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Grenon, P., Smith, B.: SNAP and SPAN: Towards dynamic spatial ontology. Spatial Cognition and Computation 4(1), 69–104 (2004)CrossRefGoogle Scholar
  5. 5.
    Hornsby, K., Egenhofer, M.: Qualitative Representation of Change. In: Frank, A.U. (ed.) COSIT 1997. LNCS, vol. 1329, pp. 15–33. Springer, Heidelberg (1997)Google Scholar
  6. 6.
    Lian, J., Chen, L., Naik, K., Liu, Y., Agnew, G.B.: Gradient boundary detection for time series snapshot construction in sensor networks. IEEE Transactions on Parallel and Distributed Systems 18(10), 1462–1475 (2007)CrossRefGoogle Scholar
  7. 7.
    Jiang, J., Worboys, M.: Detecting basic topological changes in sensor networks by local aggregation. In: ACM GIS, Irvine, CA, USA (2008)Google Scholar
  8. 8.
    Jiang, J., Worboys, M.: Event-based topology for dynamic planar areal objects. International Journal of Geographical Information Science 23(1), 33–60 (2009)CrossRefGoogle Scholar
  9. 9.
    Mau, I., Hornsby, K., Bishop, I.D.: Modeling geospatial events and impacts through qualitative change. In: Barkowsky, T., Knauff, M., Ligozat, G., Montello, D.R. (eds.) Spatial Cognition 2007. LNCS (LNAI), vol. 4387, pp. 156–174. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Peuquet, D.J., Duan, N.: An event-based spatiotemporal data model (ESTDM) for temporal analysis of geographical data. International Journal of Geographical Information Systems 9, 7–24 (1995)CrossRefGoogle Scholar
  11. 11.
    Peuquet, D.J.: Making Space for Time: Issues in Space-Time Data Representation. Geoinformatica 5(1), 11–32 (2001)zbMATHCrossRefGoogle Scholar
  12. 12.
    Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, New York (1985)Google Scholar
  13. 13.
    Sadeq, M.J., Duckham, M.: Effect of neighborhood on in-network processing in sensor networks. In: Cova, T.J., Miller, H.J., Beard, K., Frank, A.U., Goodchild, M.F. (eds.) GIScience 2008. LNCS, vol. 5266, pp. 133–150. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Shannon, C.E.: Communication in the presence of noise. Proceedings of the Institute of Radio Engineers 37(1), 10–21 (1949)MathSciNetGoogle Scholar
  15. 15.
    Skraba, P., Fang, Q., Nguyen, A., Guibas, L.: Sweeps over wireless sensor networks. In: IPSN 2006: Proceedings of the 5th International Conference on Information Processing in Sensor Networks, pp. 143–151 (2006)Google Scholar
  16. 16.
    Wark, T., Corke, P., Sikka, P., Klingbeil, L., Guo, Y., Crossman, C., Valencia, P., Swain, D., Bishop-Hurley, G.: Transforming Agriculture through Pervasive Wireless Sensor Networks. IEEE Pervasive Computing 6(2), 50–57 (2007)CrossRefGoogle Scholar
  17. 17.
    Worboys, M.: Event-oriented approaches to geographic phenomena. International Journal of Geographical Information Science 19(1), 1–28 (2005)CrossRefGoogle Scholar
  18. 18.
    Worboys, M., Duckham, M.: Monitoring qualitative spatiotemporal change for geosensor networks. International Journal of Geographical Information Science 20(10), 1087–1108 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of GeomaticsUniversity of MelbourneVictoriaAustralia

Personalised recommendations