A Mismatch Description Language for Conceptual Schema Mapping and Its Cartographic Representation

  • Thorsten Reitz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6292)


Geospatial data offered by distributed services are often modeled with different conceptual schemas although they cover the same thematic area. To ensure interoperability of geospatial data, the existing heterogeneous conceptual schemas can be mapped to a common conceptual schema. However, the underlying formalized schema mappings are difficult to create, difficult to re-use and often contain mismatches of abstraction level, of scope difference, domain semantics and value semantics of the mapped entities. We have developed a novel approach to document and communicate such mismatches in the form of a Mismatch Description Language (MDL). This MDL can be transformed into various textual and cartographic representations to support users in communicating and understanding mismatches, and to assess the reusability of a mapping.


Conceptual Schema Mapping Mismatch Description Mismatch Identification Data Integration Transformed Data Quality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mohammadi, H., Rajabifard, A., Williamson, I.P.: Enabling spatial data sharing through multi-source spatial data integration. In: Proceedings of GDSI, Rotterdam, vol. 11 (2009)Google Scholar
  2. 2.
    Zhao, T., Zhang, C., Wei, M., Peng, Z.: Ontology-Based Geospatial Data Query and Integration. Geographic Information Science, 370–392 (2008)Google Scholar
  3. 3.
    Hobona, G., Attardo, C., Laurini, R., Jackson, M., Pla, M., Zorzi, S.D., Breu, A.: Considerations for Harmonising Cross-Border Geospatial Datasets. Presented at the AGILE 2009 Pre-Conference Workshop: Challenges in Geospatial Data Harmonisation, Hannover, Germany (2009)Google Scholar
  4. 4.
    Ehrig, M.: Ontology Alignment: Bridging the Semantic Web Gap. Springer, Berlin (2006)Google Scholar
  5. 5.
    Euzenat, J., Bach, T.L., Barrasa, J., Bouquet, P., Bo, J.D., Shvaiko, P.: State of the art on ontology alignment. Technical Report, INRIA, Innsbruck (2004)Google Scholar
  6. 6.
    Scharffe, F.: Correspondence Patterns Representation. Dissertation, University of Innsbruck (2008)Google Scholar
  7. 7.
    Agarwal, P., Huang, Y., Dimitrova, V.: Formal Approach to Reconciliation of Individual Ontologies for Personalisation of Geospatial Semantic Web. In: Rodríguez, M.A., Cruz, I., Levashkin, S., Egenhofer, M.J. (eds.) GeoS 2005. LNCS, vol. 3799, pp. 195–210. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Agarwal, P.: Ontological considerations in GIScience. International Journal of Geographical Information Science 19, 501–536 (2005)CrossRefGoogle Scholar
  9. 9.
    Visser, P.R., Visser, P.R.S., Jones, D.M., Bench-capon, T.J.M., Shave, M.J.R.: An Analysis of Ontology Mismatches; Heterogeneity Versus Interoperability. Presented at the AAAI 1997 Spring Symposium on Ontological Engineering, Stanford (1997)Google Scholar
  10. 10.
    Predoiu, L., Polleres, A., Martin-Recuerda, F., Feier, C., Mocan, A., Bruijn, J.D., Porto, F., Foxvog, D., Zimmermann, K.: Framework for representing ontology networks with mappings that deal with conflicting and complementary concept definitions. Technical report, DERI, Galway (2004)Google Scholar
  11. 11.
    Klein, M.: Combining and relating ontologies: an analysis of problems and solutions. In: Proceedings of the Workshop on Ontologies and Information Sharing, IJCAI 2001 (2001)Google Scholar
  12. 12.
    Shi, W., Fisher, P., Goodchild, M.F.: Spatial Data Quality. CRC Press, Boca Raton (2002)CrossRefGoogle Scholar
  13. 13.
    Mäs, S.: Reasoning on Spatial Relations between Entity Classes. In: Proceedings of the 5th international conference on Geographic Information Science, pp. 234–248. Springer-Verlag, Park City (2008)Google Scholar
  14. 14.
    Pang, A.: Visualizing uncertainty in geo-spatial data. In: Proceedings of the Workshop on the Intersections between Geospatial Information and Information Technology (2001)Google Scholar
  15. 15.
    Griethe, H., Schumann, H.: The Visualization of Uncertain Data: Methods and Problems. In: Simulation und Visualisierung 2006, pp. 143–156. SCS Publishing House e.V., Magdeburg (2006)Google Scholar
  16. 16.
    MacEachren, A.M., Robinson, A., Gardner, S., Murray, R., Gahegan, M., Hetzler, E.: Visualizing geospatial information uncertainty: What we know and what we need to know. Cartography and Geographic Information Science 32, 139–160 (2005)CrossRefGoogle Scholar
  17. 17.
    Thomson, J., Hetzler, E., MacEachren, A., Gahegan, M., Pavel, M.: A typology for visualizing uncertainty. In: Visualization and Data Analysis 2005, pp. 146–157. SPIE, San Jose (2005)Google Scholar
  18. 18.
    Riveiro, M.: Evaluation of uncertainty visualization techniques for information fusion. In: Proceedings of the 10th International Conference on Information Fusion, Quebec, Canada, pp. 1–8 (2007)Google Scholar
  19. 19.
    Reitz, T., Kuijper, A.: Applying Instance Visualisation and Conceptual Schema Mapping for Geodata Harmonisation. In: Advances in GIScience, pp. 173–194 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Thorsten Reitz
    • 1
  1. 1.Fraunhofer Institute for Computer Graphics ResearchDarmstadtGermany

Personalised recommendations