A Visibility and Spatial Constraint-Based Approach for Geopositioning

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6292)


Over the past decade, automated systems dedicated to geopositioning have been the object of considerable development. Despite the success of these systems for many applications, they cannot be directly applied to qualitative descriptions of space. The research presented in this paper introduces a visibility and constraint-based approach whose objective is to locate an observer from the verbal description of his/her surroundings. The geopositioning process is formally supported by a constraint-satisfaction algorithm. Preliminary experiments are applied to the description of environmental scenes.


Landscape perception place descriptions scene-finding approach geopositioning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Herskovits, A.: Language and Spatial Cognition: An Interdisciplinary Study of the Prepositions in English. Cambridge University Press, Cambridge (1986)Google Scholar
  2. 2.
    Tversky, B., Lee, P.U.: How space structures language. In: Freksa, C., Habel, C., Wender, K.F. (eds.) Spatial Cognition 1998. LNCS (LNAI), vol. 1404, pp. 157–175. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Kuipers, B.: Modeling spatial knowledge. Cognitive Science 2(2), 129–153 (1978)CrossRefGoogle Scholar
  4. 4.
    Freksa, C.: Using Orientation Information for Qualitative Spatial Reasoning. In: Frank, A.U., Formentini, U., Campari, I. (eds.) GIS 1992. LNCS, vol. 639, pp. 162–178. Springer, Heidelberg (1992)Google Scholar
  5. 5.
    Smith, B., Mark, D.: Geographical categories: An ontological investigation. International Journal of Geographical Information Science 15(7), 591–612 (2001)CrossRefGoogle Scholar
  6. 6.
    Le Yaouanc, J.M., Saux, E., Claramunt, C.: A semantic and language-based representation of an environmental scene. GeoInformatica 14(3), 333–352 (2010)CrossRefGoogle Scholar
  7. 7.
    Montello, D.: Scale and multiple psychologies of space. In: Campari, I., Frank, A.U. (eds.) COSIT 1993. LNCS, vol. 716, pp. 312–321. Springer, Heidelberg (1993)Google Scholar
  8. 8.
    Peuquet, D.J., Ci-Xiang, Z.: An algorithm to determine the directional relationship between arbitrarily-shaped polygons in the plane. Pattern Recognition 20(1), 65–74 (1987)CrossRefGoogle Scholar
  9. 9.
    Grice, H.: Logic and conversation. Syntax and Semantics 3(S 41), 58 (1975)Google Scholar
  10. 10.
    Ligozat, G., Nowak, J., Schmitt, D.: From language to pictorial representations. In: Poznańskie, W. (ed.) Proc. of the Language and Technology Conference, Poznan, Poland (September 2007)Google Scholar
  11. 11.
    Le Yaouanc, J.M., Saux, E., Claramunt, C.: A salience-based approach for the modeling of landscape descriptions. In: Agrawal, D., Lu, C.T., Wolfson, O. (eds.) Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 396–399. ACM Press, New York (2009)Google Scholar
  12. 12.
    Cornell, E.H., Hill, K.A.: The problem of lost children. In: Children and their Environments: Learning, Using, and Designing Spaces, pp. 26–41. Cambridge University Press, Cambridge (2005)Google Scholar
  13. 13.
    Heth, C.D., Cornell, E.H.: A Geographic Information System for Managing Search for Lost Persons. In: Applied Spatial Cognition: From Research to Cognitive Technology. Lawrence Erlbaum Associates, Mahwah (2006)Google Scholar
  14. 14.
    Ferguson, D.: GIS for wilderness search and recue. In: Proceedings of ESRI Federal User Conference (2008)Google Scholar
  15. 15.
    De Floriani, L., Marzano, P., Puppo, E.: Line-of-sight communication on terrain models. International Journal of Geographic Information Systems 8(4), 329–342 (1994)CrossRefGoogle Scholar
  16. 16.
    Fisher, P.F.: Extending the applicability of viewsheds in landscape planning. Photogrammetric Engineering & Remote Sensing 62(11), 1297–1302 (1996)Google Scholar
  17. 17.
    Fogliaroni, P., Wallgrün, J.O., Clementini, E., Tarquini, F., Wolter, D.: A qualitative approach to localization and navigation based on visibility information. In: Hornsby, K.S., Claramunt, C., Denis, M., Ligozat, G. (eds.) COSIT 2009. LNCS, vol. 5756, pp. 312–329. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    De Floriani, L., Magillo, P.: Algorithms for visibility computation on terrains: a survey. Environment and Planning B (Planning and Design) 30(5), 709–728 (2003)CrossRefGoogle Scholar
  19. 19.
    Lee, J.: Analyses of visibility sites on topographic surfaces. International Journal of Geographic Information Systems 5, 413–429 (1991)CrossRefGoogle Scholar
  20. 20.
    Smardon, R.C., Palmer, J.F.: Foundations for Visual Project Analysis. Wiley and Sons, Inc., Chichester (1986)Google Scholar
  21. 21.
    Travis, M.R., Elsner, G.H., Iverson, W.D., Johnson, C.G.: VIEWIT: computation of seen areas, slope, and aspect for land-use planning. Technical Report GTR-PSW-011, Berkeley, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture (1975)Google Scholar
  22. 22.
    Larive, M., Dupuy, Y., Gaildrat, V.: Automatic generation of urban zones. In: Kunii, T.L., Skala, V. (eds.) Proceedings of Computer Graphics, Visualization and Computer Vision (2005)Google Scholar
  23. 23.
    AAkerberg, O., Svensson, H., Schulz, B., Nugues, P.: CarSim: an automatic 3D text-to-scene conversion system applied to road accident reports. In: Copestake, A., Hajic, J. (eds.) Proceedings of the tenth conference on European chapter of the Association for Computational Linguistics, vol. 2, pp. 191–194. ACM Press, New York (2003)Google Scholar
  24. 24.
    Le Roux, O., Gaildrat, V., Caubet, R.: Using Constraint Satisfaction Techniques in Declarative Modelling. In: Geometric Modeling: Techniques, Applications, Systems and Tools, pp. 1–20. Springer, Heidelberg (2004)Google Scholar
  25. 25.
    Desmontils, E.: Expressing constraint satisfaction problems in declarative modeling using natural language and fuzzy sets. Computers and Graphics 4(24), 555–568 (2000)Google Scholar
  26. 26.
    Mukerjee, A.: A representation for modeling functional knowledge in geometric structures. In: Ramani, S., Anjaneyulu, K.S.R., Chandrasekar, R. (eds.) KBCS 1989. LNCS, vol. 444, pp. 192–202. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  27. 27.
    Levinson, S.: Frames of reference and Molyneux’s question: cross-linguistic evidence. Language and Space, 109–169 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Naval Academy Research InstituteBrest Cedex 9France

Personalised recommendations