Cognitive Invariants of Geographic Event Conceptualization: What Matters and What Refines?

  • Alexander Klippel
  • Rui Li
  • Frank Hardisty
  • Chris Weaver
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6292)

Abstract

Behavioral experiments addressing the conceptualization of geographic events are few and far between. Our research seeks to address this deficiency by developing an experimental framework on the conceptualization of movement patterns. In this paper, we report on a critical experiment that is designed to shed light on the question of cognitively salient invariants in such conceptualization. Invariants have been identified as being critical to human information processing, particularly for the processing of dynamic information. In our experiment, we systematically address cognitive invariants of one class of geographic events: single entity movement patterns. To this end, we designed 72 animated icons that depict the movement patterns of hurricanes around two invariants: size difference and topological equivalence class movement patterns endpoints. While the endpoint hypothesis, put forth by Regier (2007), claims a particular focus of human cognition to ending relations of events, other research suggests that simplicity principles guide categorization and, additionally, that static information is easier to process than dynamic information. Our experiments show a clear picture: Size matters. Nonetheless, we also find categorization behaviors consistent with experiments in both the spatial and temporal domain, namely that topology refines these behaviors and that topological equivalence classes are categorized consistently. These results are critical steppingstones in validating spatial formalism from a cognitive perspective and cognitively grounding work on ontologies.

Keywords

Geographic event conceptualization topology similarity spatial cognition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bryant, R.: Discovery and decision: Exploring the metaphysics and epistemology of scientific classification. Fairleigh Dickinson University Press Associated Univ. Presses, London (2000)Google Scholar
  2. Clatworthy, J., Buick, D., Hankins, M., Weinman, J., Horne, R.: The use and reporting of cluster analysis in health psychology: A review. British Journal of Health Psychology 10, 329–358 (2005)CrossRefGoogle Scholar
  3. Cohn, A.G.: Qualitative Spatial Representation and Reasoning Techniques. In: Brewka, G., Habel, C., Nebel, B. (eds.) KI 1997. LNCS, vol. 1303, pp. 1–30. Springer, Heidelberg (1997)Google Scholar
  4. Egenhofer, M.J., Al-Taha, K.K.: Reasoning about gradual changes of topological relationships. In: Frank, A.U., Campari, I., Formentini, U. (eds.) Theories and methods of spatio-temporal reasoning in geographic space, pp. 196–219. Springer, Berlin (1992)Google Scholar
  5. Egenhofer, M.J., Franzosa, R.D.: Point-set topological spatial relations. International Journal of Geographical Information Systems 5(2), 161–174 (1991)CrossRefGoogle Scholar
  6. Freksa, C.: Qualitative spatial reasoning. In: Mark, D.M., Frank, A.U. (eds.) Cognitive and linguistic aspects of geographic space, pp. 361–372. Kluwer, Dodrecht (1991)Google Scholar
  7. Galton, A.: Qualitative spatial change. Spatial information systems. Oxford Univ. Press, Oxford (2000)Google Scholar
  8. Gibson, J.: The ecological approach to visual perception. Houghton Mifflin, Boston (1979)Google Scholar
  9. Goldstone, R.: The role of similarity in categorization: Providing a groundwork. Cognition 52(2), 125–157 (1994)CrossRefGoogle Scholar
  10. Janowicz, K., Keßler, C., Schwarz, M., Wilkes, M., Panov, I., Espeter, M., et al.: Algorithm, implementation and application of the SIM-DL similarity server. In: Fonseca, F., Rodríguez, M.A., Levashkin, S. (eds.) GeoS 2007. LNCS, vol. 4853, pp. 128–145. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. Klippel, A., Hardisty, F., Weaver, C.: Star plots: How shape characteristics influence classification tasks. Cartography and Geographic Information Science 36(2), 149–163 (2009)CrossRefGoogle Scholar
  12. Klippel, A., Worboys, M., Duckham, M.: Identifying factors of geographic event conceptualisation. International Journal of Geographical Information Science 22(2), 183–204 (2008)CrossRefGoogle Scholar
  13. Klippel, A.: Topologically characterized movement patterns: A cognitive assessment. Spatial Cognition and Computation 9(4), 233–261 (2009)CrossRefGoogle Scholar
  14. Klippel, A., Li, R.: The endpoint hypothesis: A topological-cognitive assessment of geographic scale movement patterns. In: Hornsby, K.S., Claramunt, C., Denis, M., Ligozat, G. (eds.) COSIT 2009. LNCS, vol. 5756, pp. 177–194. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. Klix, F.: Die Natur des Verstandes. Hogrefe, Göttingen (1992)Google Scholar
  16. Knauff, M., Rauh, R., Renz, J.: A cognitive assessment of topological spatial relations: Results from an empirical investigation. In: Hirtle, S.C., Frank, A.U. (eds.) COSIT 1997. LNCS, vol. 1329, pp. 193–206. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  17. Kos, A.J., Psenicka, C.: Measuring cluster similarity across methods. Psychological Reports 86, 858–862 (2000)CrossRefGoogle Scholar
  18. Kurata, Y.: The 9+-intersection: A universal framework for modeling topological relations. In: Cova, T.J., Miller, H.J., Beard, K., Frank, A.U., Goodchild, M.F. (eds.) GIScience 2008. LNCS, vol. 5266, pp. 181–198. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. Kurata, Y., Egenhofer, M.J.: Interpretation of behaviors from a viewpoint of topology. In: Gottfried, B., Aghajan, H. (eds.) Behaviour monitoring and interpretation. Ambient intelligence and smart environments, pp. 75–97. IOS Press, Amsterdam (2009)Google Scholar
  20. Lockhead, G.R., Pomerantz, J.R. (eds.): The perception of structure: Essays in honor of Wendell R. Garner. American Psychological Assoc., Washington (1991)Google Scholar
  21. Lu, S., Harter, D.: The role of overlap and end state in perceiving and remembering events. In: Sun, R. (ed.) The 28th Annual Conference of the Cognitive Science Society, Vancouver, British Columbia, Canada, July 26-29, pp. 1729–1734. Lawrence Erlbaum, Mahwah (2006)Google Scholar
  22. Mark, D.M., Egenhofer, M.J.: Topology of prototypical spatial relations between lines and regions in English and Spanish. In: Proceedings, Auto Carto 12, Charlotte, North Carolina, March 1995, pp. 245–254 (1995)Google Scholar
  23. Mark, D.M., Egenhofer, M.J.: Modeling spatial relations between lines and regions: Combining formal mathematical models and human subject testing. Cartography and Geographic Information Systems 21(3), 195–212 (1994)Google Scholar
  24. Medin, D.L., Wattenmaker, W.D., Hampson, S.E.: Family resemblance, conceptual cohesiveness, and category construction. Cognitive Psychology 19(2), 242–279 (1987)CrossRefGoogle Scholar
  25. Montello, D.R.: Cognitive research in GISceince: Recent achievements and future prospects. Geography Compass 3(5), 1824–1840 (2009)CrossRefGoogle Scholar
  26. Pothos, E.M., Chater, N.: A simplicity principle in unsupervised human categorization. Cognitive Science 26(3), 303–343 (2002)CrossRefGoogle Scholar
  27. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connections. In: Proceedings 3rd International Conference on Knowledge Representation and Reasoning, pp. 165–176. Morgan Kaufmann, San Francisco (1992)Google Scholar
  28. Regier, T.: The human semantic potential: Spatial language and constraint connectionism. The MIT Press, Cambridge (1996)Google Scholar
  29. Regier, T., Zheng, M.: Attention to endpoints: A cross-linguistic constraint on spatial meaning. Cognitive Science 31(4), 705–719 (2007)Google Scholar
  30. Scheider, S., Janowicz, K., Kuhn, W.: Grounding geographic categories in the meaningful environment. In: Hornsby, K.S., Claramunt, C., Denis, M., Ligozat, G. (eds.) COSIT 2009. LNCS, vol. 5756, pp. 69–87. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  31. Schwering, A.: Approaches to semantic similarity measurement for geo-spatial data: A survey. Transactions in GIS 12(1), 2–29 (2008)CrossRefGoogle Scholar
  32. Shaw, R., McIntyre, M., Mace, W.: The role of symmetry in event perception. In: MacLeod, R.B., Pick, H.L. (eds.) Perception. Essays in honour of James J. Gibson, pp. 276–310. Cornell University Press, Ithaca (1974)Google Scholar
  33. Shipley, T.F.: An invitation to an event. In: Shipley, T.F., Zacks, J.M. (eds.) Understanding events: How humans see, represent, and act on events, pp. 3–30. Oxford University Press, New York (2008)Google Scholar
  34. Skupin, A., Fabrikant, S.I.: Spatialization. In: Wilson, J., Fotheringham, A.S. (eds.) The handbook of geographic information science. Blackwell companions to geography, vol. 7, pp. 61–79. Blackwell, Malden (2007)CrossRefGoogle Scholar
  35. Stewart Hornsby, K., Li, N.: Conceptual framework for modeling dynamic paths from natural language expressions. Transactions in GIS 13(s1), 27–45 (2009)CrossRefGoogle Scholar
  36. Strube, G.: The Role of Cognitive Science in Knowledge Engineering. In: Schmalhofer, F., Strube, G., Wetter, T. (eds.) GI-Fachtagung 1991. LNCS, vol. 622, pp. 161–174. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  37. Tversky, B., Zacks, J.M., Hard, B.M.: The structure of experience. In: Shipley, T.F., Zacks, J.M. (eds.) Understanding events: How humans see, represent, and act on events, pp. 436–464. Oxford University Press, New York (2008)Google Scholar
  38. Wolff, P.: Dynamics and the perception of causal events. In: Shipley, T.F., Zacks, J.M. (eds.) Understanding events: How humans see, represent, and act on events. Oxford University Press, New York (2008)Google Scholar
  39. Xu, J.: Formalizing natural-language spatial relations between linear objects with topological and metric properties. International Journal of Geographical Information Science 21(4), 377–395 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Alexander Klippel
    • 1
  • Rui Li
    • 1
  • Frank Hardisty
    • 1
  • Chris Weaver
    • 2
  1. 1.Department of Geography, GeoVISTA CenterThe Pennsylvania State UniversityUSA
  2. 2.School of Computer Science and Center for Spatial AnalysisThe University of OklahomaUSA

Personalised recommendations