Abstract
We consider temporal logic formulae specifying constraints in continuous time and space on the behaviors of continuous and hybrid dynamical system admitting uncertain parameters. We present several variants of robustness measures that indicate how far a given trajectory stands, in space and time, from satisfying or violating a property. We present a method to compute these robustness measures as well as their sensitivity to the parameters of the system or parameters appearing in the formula. Combined with an appropriate strategy for exploring the parameter space, this technique can be used to guide simulation-based verification of complex nonlinear and hybrid systems against temporal properties. Our methodology can be used for other non-traditional applications of temporal logic such as characterizing subsets of the parameter space for which a system is guaranteed to satisfy a formula with a desired robustness degree.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)
Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43(1), 116–146 (1996)
Antoniotti, M., Policriti, A., Ugel, N., Mishra, B.: Model building and model checking for biochemical processes. Cell Biochem. Biophys. 38(3), 271–286 (2003)
Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172–206 (2002)
Bensalem, S., Peled, D. (eds.): RV 2009. LNCS, vol. 5779. Springer, Heidelberg (2009)
Calzone, L., Fages, F., Soliman, S.: Biocham: an environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics (Oxford, England) 22(14), 1805 (2006)
Donzé, A., Krogh, B., Rajhans, A.: Parameter synthesis for hybrid systems with an application to simulink models. In: Majumdar, R., Tabuada, P. (eds.) HSCC 2009. LNCS, vol. 5469, pp. 165–179. Springer, Heidelberg (2009)
Donzé, A., Maler, O.: Systematic simulations using sensitivity analysis. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 174–189. Springer, Heidelberg (2007)
Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Van Campenhout, D.: Reasoning with temporal logic on truncated paths. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003)
Fages, F., Rizk, A.: From model-checking to temporal logic constraint solving. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 319–334. Springer, Heidelberg (2009)
Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for continuous-time signals. Theoretical Computer Science 410(42), 4262–4291 (2009)
Fainekos, G.E., Pappas, G.J.: A User Guide for TaLiRo V0.1 (2009)
Kesten, Y., Pnueli, A.: A compositional approach to CTL* verification. Theor. Comput. Sci. 331(2-3), 397–428 (2005)
Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Syst. 2(4), 255–299 (1990)
Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: FORMATS/FTRTFT, pp. 152–166 (2004)
Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer, Heidelberg (2006)
Maler, O., Nickovic, D., Pnueli, A.: Checking temporal properties of discrete, timed and continuous behaviors. In: Pillars of Computer Science, pp. 475–505 (2008)
Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer, New York (1991)
Nickovic, D., Maler, O.: AMT: A property-based monitoring tool for analog systems. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 304–319. Springer, Heidelberg (2007)
Pnueli, A.: The temporal logic of programs. In: Proc. 18th Annual Symposium on Foundations of Computer Science (FOCS), pp. 46–57 (1977)
Pnueli, A., Zaks, A.: On the merits of temporal testers. In: Grumberg, O., Veith, H. (eds.) 25 Years of Model Checking. LNCS, vol. 5000, pp. 172–195. Springer, Heidelberg (2008)
Rizk, A., Batt, G., Fages, F., Soliman, S.: On a continuous degree of satisfaction of temporal logic formulae with applications to systems biology. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 251–268. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Donzé, A., Maler, O. (2010). Robust Satisfaction of Temporal Logic over Real-Valued Signals. In: Chatterjee, K., Henzinger, T.A. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2010. Lecture Notes in Computer Science, vol 6246. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15297-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-15297-9_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15296-2
Online ISBN: 978-3-642-15297-9
eBook Packages: Computer ScienceComputer Science (R0)