Skip to main content

Robust Satisfaction of Temporal Logic over Real-Valued Signals

  • Conference paper
Formal Modeling and Analysis of Timed Systems (FORMATS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6246))

Abstract

We consider temporal logic formulae specifying constraints in continuous time and space on the behaviors of continuous and hybrid dynamical system admitting uncertain parameters. We present several variants of robustness measures that indicate how far a given trajectory stands, in space and time, from satisfying or violating a property. We present a method to compute these robustness measures as well as their sensitivity to the parameters of the system or parameters appearing in the formula. Combined with an appropriate strategy for exploring the parameter space, this technique can be used to guide simulation-based verification of complex nonlinear and hybrid systems against temporal properties. Our methodology can be used for other non-traditional applications of temporal logic such as characterizing subsets of the parameter space for which a system is guaranteed to satisfy a formula with a desired robustness degree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43(1), 116–146 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Antoniotti, M., Policriti, A., Ugel, N., Mishra, B.: Model building and model checking for biochemical processes. Cell Biochem. Biophys. 38(3), 271–286 (2003)

    Article  Google Scholar 

  4. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172–206 (2002)

    Article  MathSciNet  Google Scholar 

  5. Bensalem, S., Peled, D. (eds.): RV 2009. LNCS, vol. 5779. Springer, Heidelberg (2009)

    Google Scholar 

  6. Calzone, L., Fages, F., Soliman, S.: Biocham: an environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics (Oxford, England) 22(14), 1805 (2006)

    Article  Google Scholar 

  7. Donzé, A., Krogh, B., Rajhans, A.: Parameter synthesis for hybrid systems with an application to simulink models. In: Majumdar, R., Tabuada, P. (eds.) HSCC 2009. LNCS, vol. 5469, pp. 165–179. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Donzé, A., Maler, O.: Systematic simulations using sensitivity analysis. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 174–189. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Van Campenhout, D.: Reasoning with temporal logic on truncated paths. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Fages, F., Rizk, A.: From model-checking to temporal logic constraint solving. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 319–334. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for continuous-time signals. Theoretical Computer Science 410(42), 4262–4291 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fainekos, G.E., Pappas, G.J.: A User Guide for TaLiRo V0.1 (2009)

    Google Scholar 

  13. Kesten, Y., Pnueli, A.: A compositional approach to CTL* verification. Theor. Comput. Sci. 331(2-3), 397–428 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Syst. 2(4), 255–299 (1990)

    Article  Google Scholar 

  15. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: FORMATS/FTRTFT, pp. 152–166 (2004)

    Google Scholar 

  16. Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Maler, O., Nickovic, D., Pnueli, A.: Checking temporal properties of discrete, timed and continuous behaviors. In: Pillars of Computer Science, pp. 475–505 (2008)

    Google Scholar 

  18. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer, New York (1991)

    MATH  Google Scholar 

  19. Nickovic, D., Maler, O.: AMT: A property-based monitoring tool for analog systems. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 304–319. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Pnueli, A.: The temporal logic of programs. In: Proc. 18th Annual Symposium on Foundations of Computer Science (FOCS), pp. 46–57 (1977)

    Google Scholar 

  21. Pnueli, A., Zaks, A.: On the merits of temporal testers. In: Grumberg, O., Veith, H. (eds.) 25 Years of Model Checking. LNCS, vol. 5000, pp. 172–195. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Rizk, A., Batt, G., Fages, F., Soliman, S.: On a continuous degree of satisfaction of temporal logic formulae with applications to systems biology. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 251–268. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Donzé, A., Maler, O. (2010). Robust Satisfaction of Temporal Logic over Real-Valued Signals. In: Chatterjee, K., Henzinger, T.A. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2010. Lecture Notes in Computer Science, vol 6246. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15297-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15297-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15296-2

  • Online ISBN: 978-3-642-15297-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics