Reconstruction of Ancestral Genome Subject to Whole Genome Duplication, Speciation, Rearrangement and Loss

  • Denis Bertrand
  • Yves Gagnon
  • Mathieu Blanchette
  • Nadia El-Mabrouk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6293)


Whole genome duplication (WGD) is a rare evolutionary event that has played a dramatic role in the diversification of most eukaryotic lineages. Given a set of species known to have evolved from a common ancestor through one or many rounds of WGD together with a set of genome rearrangements, and a phylogenetic tree for these species, the goal is to infer the pre-duplication ancestral genomes. We use a two step approach: (1) Compute a score for each possible ancestral adjacency at each internal node of the phylogeny; (2) Combine adjacencies to form ancestral chromosomes. We first apply our method on simulated datasets and show a high accuracy for adjacency prediction. We then infer the pre-duplicated ancestor of a set of 11 yeast species and compare it to a manually assembled ancestral genome obtained by Gordon et al. (2009).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alekseyev, M.A., Pevzner, P.A.: Colored de bruijn graphs and the genome halving problem. IEEE/ACM TCBB 4(1), 98–107 (2007)PubMedGoogle Scholar
  2. 2.
    Applegate, D., Bixby, R., Chvatal, V., Cook, W.: Concorde TSP solver (2006),
  3. 3.
    Chauve, C., Gavranović, H., Ouangraoua, A., Tannier, E.: Yeast ancestral genome reconstructions: the possibilities of computational methods II. Journal of Computational Biology (2010) (in press)Google Scholar
  4. 4.
    Chauve, C., Tannier, E.: A methodological framework for the reconstruction of contiguous regions of ancestral genomes and its application to mammalian genomes. Plos Computational Biology 4(11), e1000234 (2008)Google Scholar
  5. 5.
    El-Mabrouk, N., Sankoff, D.: The reconstruction of doubled genomes. SIAM Journal on Computing 32(1), 754–792 (2003)CrossRefGoogle Scholar
  6. 6.
    Gavranović, H., Tannier, E.: Guided genome halving: probably optimal solutions provide good insights into the preduplication ancestral genome of Saccharomyces cerevisiae. In: Pacific Symposium on Biocomputing, vol. 15, pp. 21–30 (2010)Google Scholar
  7. 7.
    Gordon, J.L., Byrne, K.P., Wolfe, K.H.: Additions, losses, and rearrangements on the evolutionary route from a reconstructed ancestor to the modern saccharomyces cerevisiae genome. PloS Genetics 5(5), e1000485 (2009)Google Scholar
  8. 8.
    Hedtke, S.M., Townsend, T.M., Hillis, D.M.: Resolution of phylogenetic conflict in large data sets by increased taxon sampling. Syst. Biol. 55, 522–529 (2006)CrossRefPubMedGoogle Scholar
  9. 9.
    Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling salesman problem. Operations Research 21, 498–516 (1973)CrossRefGoogle Scholar
  10. 10.
    Ma, J., et al.: Reconstructing contiguous regions of an ancestral genome. Genome Research 16, 1557–1565 (2007)CrossRefGoogle Scholar
  11. 11.
    Ma, J., et al.: Dupcar: Reconstructing contiguous ancestral regions with duplications. Journal of Computational Biology 15(8), 1–21 (2008)CrossRefGoogle Scholar
  12. 12.
    Salse, J., et al.: Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution in plants than in animals. PNAS 106(35), 14908–14913 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Zheng, C., Zhu, Q., Adam, Z., Sankoff, D.: Guided genome halving: hardness, heuristics and the history of the hemiascomycetes. In: ISMB, pp. 96–104 (2008)Google Scholar
  14. 14.
    Zheng, C., Zhu, Q., Sankoff, D.: Descendants of whole genome duplication within gene order phylogeny. Journal of Computational Biology 15(8), 947–964 (2008)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Denis Bertrand
    • 1
  • Yves Gagnon
    • 1
  • Mathieu Blanchette
    • 2
  • Nadia El-Mabrouk
    • 1
  1. 1.DIRO, Université de MontréalCanada
  2. 2.McGill Centre for BioinformaticsMcGill UniversityCanada

Personalised recommendations