Skip to main content

General and Special Probes in Scanning Microscopies

  • Chapter
  • First Online:
Nanotribology and Nanomechanics I

Abstract

scanning probe microscopy (SPM) Scanning probe microscopy (SPM) provides nanometer-scale mapping of numerous sample properties in essentially any environment. This unique combination of high resolution and broad applicability has led to the application of SPM to many areas of science and technology, especially those interested in the structure and properties of materials at the nanometer scale. SPM images are generated through measurements of a tip–sample interaction. A well-characterized tip is the key element to data interpretation and is typically the limiting factor.

atomic force microscopy (AFM) Commercially available atomic force microscopy (AFM) tips, integrated with force-sensing cantilevers, are microfabricated from silicon and silicon nitride by lithographic and anisotropic etching techniques. The performance of these tips can be characterized by imaging nanometer-scale standards of known dimension, and the resolution is found to roughly correspond to the tip radius of curvature, the tip aspect ratio, and the sample height. Although silicon and silicon nitride tips have a somewhat large radius of curvature, low aspect ratio, and limited lifetime due to wear, the widespread use of AFM today is due in large part to the broad availability of these tips. In some special cases, small asperities on the tip can provide resolution much higher than the tip radius of curvature for low-Z samples such as crystal surfaces and ordered protein arrays.

Several strategies have been developed to improve AFM tip performance. Oxide sharpening improves tip sharpness and enhances tip asperities. For high-aspect-ratio samples such as integrated circuits, focused ion beam (FIB) silicon AFM tips can be modified by focused ion beam (FIB) milling. FIB tips reach 3° cone angles over lengths of several microns and can be fabricated at arbitrary angles.

electron beam deposition (EBD) Other high resolution and high-aspect-ratio tips are produced by electron-beam deposition (EBD), in which a carbon spike is deposited onto the tip apex from the background gases in an electron microscope. Finally, carbon nanotubes have been employed as AFM tips. Their nanometer-scale diameter, long length, high stiffness, and elastic buckling properties make them possibly the ultimate tip material for AFM. Nanotubes can be manually attached to silicon or chemical vapor deposition (CVD) silicon nitride AFM tips or grown onto tips by chemical vapor deposition (CVD), which should soon make them widely available. In scanning tunneling microscopy scanning tunneling microscopy (STM) (STM), the electron tunneling signal decays exponentially with tip–sample separation, so that in principle only the last few atoms contribute to the signal. STM tips are, therefore, not as sensitive to the nanoscale tip geometry and can be made by simple mechanical cutting or electrochemical etching of metal wires. In choosing tip materials, one prefers hard, stiff metals that will not oxidize or corrode in the imaging environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

alternating-current

AC:

amorphous carbon

AFM:

atomic force microscope

AFM:

atomic force microscopy

CCD:

charge-coupled device

CNF:

carbon nanofiber

CNT:

carbon nanotube

CVD:

chemical vapor deposition

DC-PECVD:

direct-current plasma-enhanced CVD

DC:

direct-current

EBD:

electron beam deposition

EBID:

electron-beam-induced deposition

FIB:

focused ion beam

LPCVD:

low-pressure chemical vapor deposition

MEMS:

microelectromechanical system

MWNT:

multiwall nanotube

NSOM:

near-field scanning optical microscopy

PECVD:

plasma-enhanced chemical vapor deposition

PMMA:

poly(methyl methacrylate)

SEM:

scanning electron microscope

SEM:

scanning electron microscopy

SPM:

scanning probe microscope

SPM:

scanning probe microscopy

STM:

scanning tunneling microscope

STM:

scanning tunneling microscopy

SWNT:

single wall nanotube

SWNT:

single-wall nanotube

TEM:

transmission electron microscope

TEM:

transmission electron microscopy

UHV:

ultrahigh vacuum

References

  1. R. Linnemann, T. Gotszalk, I.W. Rangelow, P. Dumania, E. Oesterschulze, Atomic force microscopy and lateral force microscopy using piezoresistive cantilevers. J. Vac. Sci. Technol. B 14(2), 856–860 (1996).

    Article  Google Scholar 

  2. T.R. Albrecht, S. Akamine, T.E. Carver, C.F. Quate, Microfabrication of cantilever styli for the atomic force microscope. J. Vac. Sci. Technol. A 8(4), 3386–3396 (1990).

    Article  Google Scholar 

  3. O. Wolter, T. Bayer, J. Greschner, Micromachined silicon sensors for scanning force microscopy. J. Vac. Sci. Technol. B 9(2), 1353–1357 (1991).

    Article  Google Scholar 

  4. C. Bustamante, D. Keller, Scanning force microscopy in biology. Phys. Today 48(12), 32–38 (1995).

    Article  Google Scholar 

  5. J. Vesenka, S. Manne, R. Giberson, T. Marsh, E. Henderson, Colloidal gold particles as an incompressible atomic force microscope imaging standard for assessing the compressibility of biomolecules. Biophys. J. 65, 992–997 (1993).

    Article  Google Scholar 

  6. D.J. Müller, D. Fotiadis, S. Scheuring, S.A. Müller, A. Engel, Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscope. Biophys. J. 76(2), 1101–1111 (1999).

    Article  Google Scholar 

  7. R.B. Marcus, T.S. Ravi, T. Gmitter, K. Chin, D.J. Liu, W. Orvis, D.R. Ciarlo, C.E. Hunt, J. Trujillo, Formation of silicon tips with < 1 nm radius. Appl. Phys. Lett. 56(3), 236–238 (1990).

    Article  Google Scholar 

  8. J.H. Hafner, C.L. Cheung, C.M. Lieber, unpublished results (2001).

    Google Scholar 

  9. J.H. Hafner, C.L. Cheung, T.H. Oosterkamp, C.M. Lieber, High-yield assembly of individual single-walled carbon nanotube tips for scanning probe microscopies. J. Phys. Chem. B 105(4), 743–746 (2001).

    Article  Google Scholar 

  10. F. Ohnesorge, G. Binnig, True atomic resolution by atomic force microscopy through repulsive and attractive forces. Science 260, 1451–1456 (1993).

    Article  Google Scholar 

  11. D.J. Müller, D. Fotiadis, A. Engel, Mapping flexible protein domains at subnanometer resolution with the atomic force microscope. FEBS Letters 430(1/2), 105–111 (1998), Special Issue SI.

    Article  Google Scholar 

  12. S. Akamine, R.C. Barrett, C.F. Quate, Improved atomic force microscope images using microcantilevers with sharp tips. Appl. Phys. Lett. 57(3), 316–318 (1990).

    Article  Google Scholar 

  13. D.J. Keller, C. Chih-Chung, Imaging steep, high structures by scanning force microscopy with electron beam deposited tips. Surf. Sci. 268, 333–339 (1992).

    Article  Google Scholar 

  14. T. Ichihashi, S. Matsui, In situ observation on electron beam induced chemical vapor deposition by transmission electron microscopy. J. Vac. Sci. Technol. B 6(6), 1869–1872 (1988).

    Article  Google Scholar 

  15. K.I. Schiffmann, Investigation of fabrication parameters for the electron-beam-induced deposition of contamination tips used in atomic force microscopy. Nanotechnology 4, 163–169 (1993).

    Article  Google Scholar 

  16. D.S. Bethune, C.H. Kiang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363(6430), 605–607 (1993).

    Article  Google Scholar 

  17. E.T. Thostenson, Z. Ren, T.W. Chou, Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 61(13), 1899–1912 (2001).

    Article  Google Scholar 

  18. H.J. Dai, J.H. Hafner, A.G. Rinzler, D.T. Colbert, R.E. Smalley, Nanotubes as nanoprobes in scanning probe microscopy. Nature 384(6605), 147–150 (1996).

    Article  Google Scholar 

  19. A.G. Rinzler, Y.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tomanek, D.T. Colbert, R.E. Smalley, Unraveling nanotubes: Field emission from atomic wire. Science 269, 1550 (1995).

    Article  Google Scholar 

  20. R. Stevens, C. Nguyen, A. Cassell, L. Delzeit, M. Meyyappan, J. Han, Improved fabrication approach for carbon nanotube probe devices. Appl. Phys. Lett. 77, 3453–3455 (2000).

    Article  Google Scholar 

  21. H. Nishijima, S. Kamo, S. Akita, Y. Nakayama, K.I. Hohmura, S.H. Yoshimura, K. Takeyasu, Carbon-nanotube tips for scanning probe microscopy: Preparation by a controlled process and observation of deoxyribonucleic acid. Appl. Phys. Lett. 74, 4061–4063 (1999).

    Article  Google Scholar 

  22. B.C. Park, K.Y. Jung, W.Y. Song, O. Beom-Hoan, S.J. Ahn, Bending of a carbon nanotube in vacuum using a focused ion beam. Adv. Mater. 18, 95–98 (2006).

    Article  Google Scholar 

  23. A. Hall, W.G. Matthews, R. Superfine, M.R. Falvo, S. Washburna, Simple and efficient method for carbon nanotube attachment to scanning probes and other substrates. Appl. Phys. Lett. 82, 2506–2508 (2003).

    Article  Google Scholar 

  24. J. Tang, G. Yang, Q. Zhang, A. Parhat, B. Maynor, J. Liu, L.C. Qin, O. Zhou, Rapid and reproducible fabrication of carbon nanotube AFM probes by dielectrophoresis. Nano Lett. 5, 11–14 (2005).

    Article  Google Scholar 

  25. J.-E. Kim, J.-K. Park, C.-S. Han, Use of dielectrophoresis in the fabrication of an atomic force microscope tip with a carbon nanotube: Experimental investigation. Nanotechnology 17, 2937–2941 (2006).

    Article  Google Scholar 

  26. J.H. Hafner, M.J. Bronikowski, B.R. Azamian, P. Nikolaev, A.G. Rinzler, D.T. Colbert, K.A. Smith, R.E. Smalley, Catalytic growth of single-wall carbon nanotubes from metal particles. Chem. Phys. Lett. 296(1/2), 195–202 (1998).

    Article  Google Scholar 

  27. P. Nikolaev, M.J. Bronikowski, R.K. Bradley, F. Rohmund, D.T. Colbert, K.A. Smith, R.E. Smalley, Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 313(1/2), 91–97 (1999).

    Article  Google Scholar 

  28. W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Large-scale synthesis of aligned carbon nanotubes. Science 274(5293), 1701–1703 (1996).

    Article  Google Scholar 

  29. J.H. Hafner, C.L. Cheung, C.M. Lieber, Growth of nanotubes for probe microscopy tips. Nature 398(6730), 761–762 (1999).

    Article  Google Scholar 

  30. V. Lehmann, The physics of macroporous silicon formation. Thin Solid Films 255, 1–4 (1995).

    Article  Google Scholar 

  31. F. Ronkel, J.W. Schultze, R. Arensfischer, Electrical contact to porous silicon by electrodeposition of iron. Thin Solid Films 276(1–2), 40–43 (1996).

    Article  Google Scholar 

  32. J.H. Hafner, C.L. Cheung, C.M. Lieber, Direct growth of single-walled carbon nanotube scanning probe microscopy tips. J. Am. Chem. Soc. 121(41), 9750–9751 (1999).

    Article  Google Scholar 

  33. E.B. Cooper, S.R. Manalis, H. Fang, H. Dai, K. Matsumoto, S.C. Minne, T. Hunt, C.F. Quate, Terabit-per-square-inch data storage with the atomic force microscope. Appl. Phys. Lett. 75(22), 3566–3568 (1999).

    Article  Google Scholar 

  34. E. Yenilmez, Q. Wang, R.J. Chen, D. Wang, H. Dai, Wafer scale production of carbon nanotube scanning probe tips for atomic force microscopy. Appl. Phys. Lett. 80(12), 2225–2227 (2002).

    Article  Google Scholar 

  35. Q. Ye, A.M. Cassell, H.B. Liu, K.J. Chao, J. Han, M. Meyyappan, Large-scale fabrication of carbon nanotube probe tips for atomic force microscopy critical dimension imaging applications. Nano Lett. 4, 1301–1308 (2004).

    Article  Google Scholar 

  36. H. Cui, S.V. Kalinin, X. Yang, D.H. Lowndes, Growth of carbon nanofibers on tipless cantilevers for high resolution topography and magnetic force imaging. Nano Lett. 4, 2157–2161 (2004).

    Article  Google Scholar 

  37. I.-C. Chen, L.-H. Chen, X.-R. Ye, C. Daraio, S. Jin, C.A. Orme, A. Quist, R. Lal, Extremely sharp carbon nanocone probes for atomic force microscopy imaging. Appl. Phys. Lett. 88, 153102 (2006).

    Article  Google Scholar 

  38. I.-C. Chen, L.-H. Chen, C.A. Orme, A. Quist, R. Lal, S. Jin, Fabrication of high-aspect-ratio carbon nanocone probes by electron beam induced deposition patterning. Nanotechnology 17, 4322 (2006).

    Article  Google Scholar 

  39. Z.F. Deng, E. Yenilmez, A. Reilein, J. Leu, H. Dai, K.A. Moler, Nanotube manipulation with focused ion beam. Appl. Phys. Lett. 88, 023119 (2006).

    Article  Google Scholar 

  40. J.F. AuBuchon, L.-H. Chen, S. Jin, Control of carbon capping for regrowth of aligned carbon nanotubes. J. Phys. Chem. B 109, 6044–6048 (2005).

    Article  Google Scholar 

  41. J.F. AuBuchon, L.-H. Chen, A.I. Gapin, S. Jin, electric-field-guided growth of carbon nanotubes during DC plasma-enhanced CVD. Chem. Vap. Depos. 12(6), 370–374 (2006).

    Article  Google Scholar 

  42. I.-C. Chen, L.-H. Chen, C.A. Orme, S. Jin, Control of curvature in highly compliant probe cantilevers during carbon nanotube growth. Nano Lett. 7(10), 3035–3040 (2007).

    Article  Google Scholar 

  43. A. Quist, I. Doudevski, H. Lin, R. Azimova, D. Ng, B. Frangione, B. Kagan, J. Ghiso, R. Lal, Amyloid ion channels: A common structural link for protein-misfolding disease. Proc. Natl. Acad. Sci. USA 102, 10427 (2005).

    Article  Google Scholar 

  44. A.P. Quist, A. Chand, S. Ramachandran, C. Daraio, S. Jin, R. Lal, AFM imaging and electrical recording of lipid bilayers supported over microfabricated silicon chip nanopores, A lab on-chip system for lipid membrane and ion channels. Langmuir 23(3), 1375 (2007).

    Article  Google Scholar 

  45. J. Thimm, A. Mechler, H. Lin, S.K. Rhee, R. Lal, Calcium dependent open-closed conformations and interfacial energy maps of reconstituted individual hemichannels. J. Biol. Chem. 280, 10646 (2005).

    Article  Google Scholar 

  46. A. Stemmer, A. Hefti, U. Aebi, A. Engel, Scanning tunneling and transmission electron microscopy on identical areas of biological specimens. Ultramicroscopy 30(3), 263 (1989).

    Article  Google Scholar 

  47. J.H. Hafner, C.L. Cheung, A.T. Woolley, C.M. Lieber, Structural and functional imaging with carbon nanotube AFM probes. Prog. Biophys. Mol. Biol. 77(1), 73–110 (2001).

    Article  Google Scholar 

  48. R. Nicolaides, L. Yong, W.E. Packard, W.F. Zhou, H.A. Blackstead, K.K. Chin, J.D. Dow, J.K. Furdyna, M.H. Wei, R.C.J. Jaklevic, W. Kaiser, A.R. Pelton, M.V. Zeller, J. Bellina Jr., Scanning tunneling microscope tip structures. J. Vac. Sci. Technol. A 6(2), 445–447 (1988).

    Article  Google Scholar 

  49. J.P. Ibe, P.P. Bey, S.L. Brandow, R.A. Brizzolara, N.A. Burnham, D.P. DiLella, K.P. Lee, C.R.K. Marrian, R.J. Colton, On the electrochemical etching of tips for scanning tunneling microscopy. J. Vac. Sci. Technol. A 8, 3570–3575 (1990).

    Article  Google Scholar 

  50. L. Libioulle, Y. Houbion, J.-M. Gilles, Very sharp platinum tips for scanning tunneling microscopy. Rev. Sci. Instrum. 66(1), 97–100 (1995).

    Article  Google Scholar 

  51. A.J. Nam, A. Teren, T.A. Lusby, A.J. Melmed, Benign making of sharp tips for STM and FIM: Pt, Ir, Au, Pd, and Rh, J., Vac. Sci. Technol. B 13(4), 1556–1559 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Hafner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hafner, J., Chen, E.(C., Lal, R., Jin, S. (2011). General and Special Probes in Scanning Microscopies. In: Bhushan, B. (eds) Nanotribology and Nanomechanics I. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15283-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15283-2_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15282-5

  • Online ISBN: 978-3-642-15283-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics