Advertisement

An Analytical Model for the Probability Characteristics of a Crack Hitting an Encapsulated Self-healing Agent in Concrete

  • Serguey V. Zemskov
  • Henk M. Jonkers
  • Fred J. Vermolen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6244)

Abstract

The present study is performed in the framework of the investigation of the potential of bacteria to act as a catalyst of the self-healing process in concrete, i.e. their ability to repair occurring cracks autonomously. Spherical clay capsules containing the healing agent (calcium lactate) are embedded in the concrete structure. Water entering a freshly formed crack releases the healing agent and activates the bacteria which will seal the crack through the process of metabolically mediated calcium carbonate precipitation. In the paper, an analytic formalism is developed for the computation of the probability that a crack hits an encapsulated particle, i.e. the probability that the self-healing process starts. Most computations are performed in closed algebraic form in the computer algebra system Mathematica which allows to perform the last step of calculations numerically with a higher accuracy.

Keywords

Healing Agent Fibre Reinforce Polymer Carbon Fibre Reinforce Polymer Crack Depth Computer Algebra System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jonkers, H.M., Thijssen, A., Muyzer, G., Copuroglu, O., Schlangen, E.: Application of Bacteria as Self-Healing Agent for the Development of Sustainable Concrete. Ecological Engineering 36(2), 230–235 (2010)CrossRefGoogle Scholar
  2. 2.
    Mookhoek, S.D., Fischer, H.R., Zwaag, S.v.d.: A Numerical Study into the Effects of Elongated Capsules on the Healing Efficiency of Liquid-Based Systems. Computational Materials Science 47(2), 506–511 (2009)CrossRefGoogle Scholar
  3. 3.
    Rényi, A.: Wahrscheinlichkeitsrechnung, 2. Aufl., Berlin (1966)Google Scholar
  4. 4.
    Toohey, K.S., Sottos, N.R., Lewis, J.A., Moor, J.S., White, S.R.: Self-Healing Materials with Microvascular Networks. Nature Materials 6, 581–585 (2007)CrossRefGoogle Scholar
  5. 5.
    White, S.R., Sottos, N.R., Geubelle, P.H., Moore, J.S., Kessler, M.R., Sriram, S.R., Brown, E.N., Viswanathan, S.: Autonomic Healing of Polymer Composites. Nature 409, 794–797 (2001)CrossRefGoogle Scholar
  6. 6.
    Williams, G., Trask, R., Bond, I.: A Self-Healing Carbon Fibre Reinforced Polymer for Aerospace Applications. Composites Part A: Applied Science and Manufacturing 38(6), 1525–1532 (2007)CrossRefGoogle Scholar
  7. 7.
    Wilson, G.O., Moore, J.S., White, S.R., Sottos, N.R., Andersson, H.M.: Autonomic Healing of Epoxy Vinyl Esters via Ring Opening Metathesis Polymerization. Advanced Functional Materials 18(1), 44–52 (2008)CrossRefGoogle Scholar
  8. 8.
    Wolfram, S.: The Mathematica Book, 5th edn. Wolfram Media, Inc. (2003)Google Scholar
  9. 9.
    Yin, T., Rong, M.Z., Zhang, M.Q., Yang, G.C.: Self-Healing Epoxy Composites — Preparation and Effect of the Healant Consisting of Microencapsulated Epoxy and Latent Curing Agent. Composites Science and Technology 67, 201–212 (2007)CrossRefGoogle Scholar
  10. 10.
    Zwaag, S.v.d.: Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science. Springer Series in Materials Science, vol. 100 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Serguey V. Zemskov
    • 1
  • Henk M. Jonkers
    • 1
  • Fred J. Vermolen
    • 1
  1. 1.Delft University of TechnologyNetherlands

Personalised recommendations