Advertisement

Derivation of Explicit Difference Schemes for Ordinary Differential Equations with the Aid of Lagrange–Burmann Expansions

  • Evgenii V. Vorozhtsov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6244)

Abstract

We propose to derive the explicit multistage methods of the Runge–Kutta type for ordinary differential equations (ODEs) with the aid of the expansion of grid functions into the Lagrange–Burmann series. New explicit first- and second-order methods are derived, which are applied to the numerical integration of the Cauchy problem for a moderately stiff ODE system. It turns out that the L 2 norm of the error of the solution obtained by the new numerical second-order method is 50 times smaller than in the case of the classical second-order Runge–Kutta method.

Keywords

Local Error Kutta Method Absolute Stability Explicit Method Negative Real Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulle, A.: Chebyshev methods based on orthogonal polynomials. Ph.D. Doctoral Dissertation No. 3266, Dept. Math., Univ. of Geneva (2001)Google Scholar
  2. 2.
    Abdulle, A.: Fourth order Chebyshev methods with recurrence relation. SIAM J. Sci. Comput. 23, 2041–2054 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Abramowitz, M., Stegun, I.A.: Hanbook of Mathematical Functions. National Bureau of Standards (1964)Google Scholar
  4. 4.
    Butcher, J.C.: The Numerical Analysis of Ordinary Differential Equations. Wiley, Chichester (1987)zbMATHGoogle Scholar
  5. 5.
    Consul, P.C., Famoye, F.: Lagrangian Probability Distributions. Birkhäuser, Basel (2006)zbMATHGoogle Scholar
  6. 6.
    Dahlquist, G.: A special stability problem for linear multistep methods. BIT 3, 27–43 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hall, G., Watt, J.M. (eds.): Modern Numerical Methods for Ordinary Differential Equations. Clarendon Press, Oxford (1976)zbMATHGoogle Scholar
  8. 8.
    van der Houwen, P., Sommeijer, B.: On the internal stability of explicit, m-stage Runge-Kutta methods for large m-values. Z. Angew. Math. Mech. 60, 479–485 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hundsdorfer, W., Verwer, J.: Numerical Solutions of Time-Dependent Advection- Diffusion-Reaction Equations, 2nd edn. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  10. 10.
    Krylov, V.I., Bobkov, V.V., Monastyrnyi, P.I.: Numerical Methods, Nauka, Moscow, vol. II (1977) (in Russian)Google Scholar
  11. 11.
    Lavrentiev, M.A., Shabat, B.V.: Methods of the Theory of Functions of Complex Variable, 4th edn., Nauka, Moscow (1973) (in Russian)Google Scholar
  12. 12.
    Martin-Vaquero, J., Janssen, B.: Second-order stabilized explicit Runge–Kutta methods for stiff problems. Computer Phys. Communications 180, 1802–1810 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Oran, E.S., Boris, J.P.: Numerical Simulation of Reactive Flow. Elsevier, New York (1987)zbMATHGoogle Scholar
  14. 14.
    Pinchukov, V.I., Shu, C.-W.: Numerical Methods of Higher Orders for Fluid Dynamics Problems. Published by the Siberian Branch of the Russian Acad. Sci., Novosibirsk (2000) (in Russian)Google Scholar
  15. 15.
    Rakitskii, Y.V., Ustinov, S.M., Chernorutskii, I.G.: Numerical Methods for Solving Stiff Systems, Nauka, Moscow (1979) (in Russian)Google Scholar
  16. 16.
    Sofroniou, M.: Order stars and linear stability theory. J. Symbolic Computation 21, 101–131 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Strampp, W., Ganzha, V., Vorozhtsov, E.: Höhere Mathematik mit Mathematica. In: Band 3: Differentialgleichungen und Numerik. Vieweg, Braunschweig/Wiesbaden (1997)Google Scholar
  18. 18.
    Vorozhtsov, E.V.: Construction of difference schemes for hyperbolic conservation laws with the aid of the Lagrange–Bürmann expansions. In: Mikhailov, G.A., Ilyin, V.P., Laevsky, Y.M. (eds.) Proc. Int. Conf. on Numerical Mathematics, Pt. I. Price-Courier, Novosibirsk, pp. 443–448 (2004) (in Russian)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Evgenii V. Vorozhtsov
    • 1
  1. 1.Khristianovich Institute of Theoretical and Applied MechanicsRussian Academy of SciencesNovosibirskRussia

Personalised recommendations