Skip to main content

Solubilization of Phosphorus by Soil Microorganisms

  • Chapter
  • First Online:
Phosphorus in Action

Part of the book series: Soil Biology ((SOILBIOL,volume 26))

Abstract

Non-mycorrhizal microbial inoculants (biofertilizers) can potentially stimulate soil P cycling by solubilizing organic- and mineral-bound P. These P-solubilizing microorganisms (PSM) include a wide range of bacteria, fungi and actinomycetes, many of which are common in the rhizosphere. There appears to be two main PSM strategies for enhancing soil P availability, namely (1) the enhanced dissolution of P-containing minerals through a combination of soil acidification and the release of metal complexing agents (predominantly organic acid anions) and (2) the enzymatic breakdown of organic P. In terms of P cycling in natural environments, it is likely that strategy (2) is most important in terms of the annual flux of P through the plant–soil system. However, in highly P-limiting environments it is likely that strategy (1) becomes more important for mobilizing highly insoluble mineral-bound P. Field application of PSM have shown highly variable responses due to the fact that most PSM are not selected for their rhizosphere competence or for their ability to survive in different soil types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdulla H (2009) Bioweathering and biotransformation of granitic rock minerals by actinomycetes. Microb Ecol 58:753–761

    CAS  PubMed  Google Scholar 

  • Achat DL, Bakker MR, Morel C (2009) Process-based assessment of phosphorus availability in a low phosphorus sorbing forest soil using isotopic dilution methods. Soil Sci Soc Am J 73:2131–2142

    CAS  Google Scholar 

  • Ajiboye B, Hu Y, Flaten DN (2007) Phosphorus speciation of sequential extracts of organic amendments using nuclear magnetic resonance and X-ray absorption near-edge structure spectroscopies. J Environ Qual 36:1563–1576

    CAS  PubMed  Google Scholar 

  • Alexander M (1977) Introduction to soil microbiology, 2nd edn. Wiley, New York, p 467

    Google Scholar 

  • Ali MA, Louche J, Legname E, Duchemin M, Plassard C (2009) Pinus pinaster seedlings and their fungal symbionts show high plasticity in phosphorus acquisition in acidic soils. Tree Physiol 29:1587–1597

    CAS  PubMed  Google Scholar 

  • Alphei J, Bonkowski M, Scheu S (1996) Protozoa, Nematoda and Lumbricidae in the rhizosphere of Hordelymus europaeus (Poaceae): faunal interactions, response of microorganisms and effects on plant growth. Oecologia 106:111–126

    Google Scholar 

  • Anderson G (1961) Estimation of purines and pymiridines in soil humic acid. Soil Sci 91:156–161

    CAS  Google Scholar 

  • Anderson G, Malcolm RE (1974) The nature alkali-soluble soil organic phosphates. J Soil Sci 13:216–224

    Google Scholar 

  • Arcand MM, Schneider KM (2006) Plant- and microbial-based mechanisms to improve the agronomic effectiveness of phosphate rock: a review. Ann Braz Acad Sci 78:791–807

    CAS  Google Scholar 

  • Aria MM, Lakzian A, Haghnia GH, Berenji AR, Besharati H, Fotovat A (2010) Effect of Thiobacillus, sulfur, and vermicompost on the water-soluble phosphorus of hard rock phosphate. Bioresour Technol 101:551–554

    CAS  PubMed  Google Scholar 

  • Arvieu JC, Leprince F, Plassard C (2003) Release of oxalate and protons by ectomycorrhizal fungi in response to P-deficiency and calcium carbonate in nutrient solution. Ann For Sci 60:815–821

    CAS  Google Scholar 

  • Asea PEA, Kucey RMN, Stewart JWB (1988) Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biol Biochem 20:459–464

    CAS  Google Scholar 

  • Aspiras RB, Allen ON, Harris RF, Chesters G (1971) The role of microorganisms in the stabilization of soil aggregates. Soil Biol Biochem 3:347–353

    CAS  Google Scholar 

  • Babana AH, Antoun H (2006) Effect of Tilemsi phosphate rock-solubilizing microorganisms on phosphorus uptake and yield of field-grown wheat (Triticum aestivum L.) in Mali. Plant Soil 287:51–58

    CAS  Google Scholar 

  • Banik S, Dey BK (1982) Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate solubilizing bacteria. Plant Soil 69:353–364

    CAS  Google Scholar 

  • Barreto TR, da Silva ACM, Soares ACF, de Souza JT (2008) Population densities and genetic diversity of Actinomycetes associated to the rhizosphere of Theobroma cacao. Braz J Microbiol 39:464–470

    PubMed  Google Scholar 

  • Ben Farhat M, Farhat A, Bejar W, Kammoun R, Bouchaala K, Fourati A, Antoun H, Bejar S, Chouayekh H (2009) Characterization of the mineral phosphate solubilizing activity of Serratia marcescens CTM 50650 isolated from the phosphate mine of Gafsa. Arch Microbiol 191:815–824

    CAS  PubMed  Google Scholar 

  • Benmore RA, Coleman ML, McArthur JM (1983) Origin of sedimentary francolite from its sulphur and carbon composition. Nature 302:516–518

    CAS  Google Scholar 

  • Blake L, Mercik S, Koerschens M, Moskal S, Poulton PR, Goulding KWT, Weigel A, Powlson DS (2000) Phosphorus content in soil, uptake by plants and balance in three European long-term field experiments. Nutr Cycl Agroecosys 56:263–275

    Google Scholar 

  • Bolton H, Elliott LF, Papendick RI, Bezdicek DF (1985) Soil microbial biomass and selected soil enzyme-activities – effect of fertilization and cropping practices. Soil Biol Biochem 17:297–302

    CAS  Google Scholar 

  • Browne P, Rice O, Miller SH, Burke J, Dowling DN, Morrissey JP, O’Gara F (2009) Superior inorganic phosphate solubilization is linked to phylogeny within the Pseudomonas fluorescens complex. Appl Soil Ecol 43:131–138

    Google Scholar 

  • Bünemann E, Bossio DA, Smithson PC, Frossard E, Oberson A (2004) Microbial community composition and substrate use in a highly weathered soil as affected by crop rotation and P fertilization. Soil Biol Biochem 36:889–901

    Google Scholar 

  • Bünemann EK, Prusisz B, Ehlers K (2011) Characterization of phosphorus forms in soil microorganisms. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, vol 26. Springer, Heidelberg. doi:10.1007/978-3-642-15271-9_2

    Google Scholar 

  • Butterly CR, Bünemann EK, McNeill AM, Baldock JA, Marschner P (2009) Carbon pulses but not phosphorus pulses are related to decrease in microbial biomass during repeated drying and rewetting of soils. Soil Biol Biochem 41:1406–1416

    CAS  Google Scholar 

  • Caballero-Mellado J, Onofre-Lemus J, Estrada-de los Santos P, Martinez-Aguilar L (2007) The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Appl Environ Microbiol 73:5308–5319

    CAS  PubMed Central  PubMed  Google Scholar 

  • Casarin V, Plassard C, Souche G, Arvieu JC (2003) Quantification of oxalate ions and protons released by ectomycorrhizal fungi in rhizosphere soil. Agronomie 23:461–469

    CAS  Google Scholar 

  • Celi L, Barberis E (2005) Abiotic stabilization of organic phosphorus in the environment. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. CABI, Wallingford, pp 113–132

    Google Scholar 

  • Chang CH, Yang SS (2009) Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation. Bioresour Technol 100:1648–1658

    CAS  PubMed  Google Scholar 

  • Chapuis-Lardy L, Le Bayon R-C, Brossard M, López-Hernández D, Blanchart E (2011) Role of soil macrofauna in phosphorus cycling. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, vol 26. Springer, Heidelberg. doi:10.1007/978-3-642-15271-9_8

    Google Scholar 

  • Chauhan BS, Stewart JWB, Paul EA (1979) Effect of carbon additions on soil labile inorganic, organic and microbially held phosphate. Can J Soil Sci 59:387–396

    CAS  Google Scholar 

  • Chauhan BS, Stewart JWB, Paul EA (1981) Effect of labile inorganic-phosphate status and organic-carbon additions on the microbial uptake of phosphorus in soils. Can J Soil Sci 61:373–385

    CAS  Google Scholar 

  • Chen CR, Condron LM, Davis MR, Sherlock RR (2003) Seasonal changes in soil phosphorus and associated microbial properties under adjacent grassland and forest in New Zealand. For Ecol Manage 117:539–557

    Google Scholar 

  • Chen ZX, Ma S, Liu L (2008) Studies on phosphorus solubilizing activity of a strain of phosphobacteria isolated from chestnut type soil in China. Bioresour Technol 99:6702–6707

    CAS  PubMed  Google Scholar 

  • Clarholm M (1993) Microbial biomass P, labile P and acid-phosphatase-activity in the humus layer of a spruce forest, after repeated additions of fertilizers. Biol Fertil Soils 16:287–292

    CAS  Google Scholar 

  • Cole CV, Elliot ET, Hunt HW, Coleman DC (1978) Trophic interactions in soil as they affect energy and nutrient dynamics. V. Phosphorus transformations. Microb Ecol 4:381–387

    CAS  Google Scholar 

  • Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Change 19:292–305

    Google Scholar 

  • Criquet S, Tagger S, Vogt G, Le Petit J (2002) Endoglucanase and β-glycosidase activities in an evergreen oak litter: annual variation and regulating factors. Soil Biol Biochem 34:1111–1120

    CAS  Google Scholar 

  • Criquet S, Ferre E, Farner EM, Le Petit J (2004) Annual dynamics of phosphatase activities in an evergreen oak litter – influence of biotic and abiotic factors. Soil Biol Biochem 36:1111–1118

    CAS  Google Scholar 

  • Crowley DE (2007) Microbial siderophores in the plant rhizosphere. In: Barton LL, Abadia J (eds) Iron nutrition in plants and rhizospheric microorganisms. Springer, Dordrecht, pp 169–198

    Google Scholar 

  • Dadhich SK, Somani LL, Verma A (2006) Improved soybean yield, nutrient uptake and P enrichment in soil due to co-inoculation of phosphate solubilizing bacteria and VAM fungi in a clay loam soil. Indian J Microbiol 46:405–407

    CAS  Google Scholar 

  • Dalal RC (1977) Soil organic phosphorus. Adv Agron 29:83–117

    CAS  Google Scholar 

  • Danhorn T, Fuqua C (2003) The effect of phosphorus concentration on the adherence of Agrobacterium tumefaciens to surfaces. In: Abstracts of the general meeting of the American Society for Microbiology 103. pp I–100

    Google Scholar 

  • Das AC, Debnath A (2006) Effect of systemic herbicides on N2-fixing and phosphate solubilizing microorganisms in relation to availability of nitrogen and phosphorus in paddy soils of West Bengal. Chemosphere 65:1082–1086

    CAS  PubMed  Google Scholar 

  • deFreitas JR, Banerjee MR, Germida JJ (1997) Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L). Biol Fertil Soils 24:358–364

    CAS  Google Scholar 

  • Denton MD, Reeve WG, Howieson JG, Coventry DR (2003) Competitive abilities of common field isolates and a commercial strain of Rhizobium leguminosarum bv. trifolii for clover nodule occupancy. Soil Biol Biochem 35:1039–1048

    CAS  Google Scholar 

  • Dephilippis R, Sili C, Tassinato G, Vincenzini M, Materassi R (1991) Effects of growth-conditions on exopolysaccharide production by Cyanospira capsulata. Bioresour Technol 38:101–104

    CAS  Google Scholar 

  • Dephilippis R, Margheri MC, Pelosi E, Ventura S (1993) Exopolysaccharide production by a unicellular cyanobacterium isolated from a hypersaline habitat. J Appl Phycol 5:387–394

    CAS  Google Scholar 

  • Dwivedi BS, Singh VK, Dwivedi V (2004) Application of phosphate rock, with or without Aspergillus awamori inoculation, to meet phosphorus demands of rice-wheat systems in the Indo-Gangetic plains of India. Aust J Exp Agric 44:1041–1050

    CAS  Google Scholar 

  • Eivazi F, Tabatabai MA (1977) Phosphatases in soils. Soil Biol Biochem 9:167–172

    CAS  Google Scholar 

  • Elkoca E, Kantar F, Sahin F (2008) Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpea. J Plant Nutr 31:157–171

    CAS  Google Scholar 

  • El-Tarabily KA, Nassar AH, Sivasithamparam K (2008) Promotion of growth of bean (Phaseolus vulgaris L.) in a calcareous soil by a phosphate-solubilizing, rhizosphere-competent isolate of Micromonospora endolithica. Appl Soil Ecol 39:161–171

    Google Scholar 

  • Fabre B, Armau E, Etienne G, Legendre F, Tiraby G (1988) A simple screening method for insecticidal substances from actinomycetes. J Antibiot 41:212–219

    CAS  PubMed  Google Scholar 

  • Fernández LA, Zalba P, Gomez MA, Sagardoy MA (2007) Phosphate-solubilization activity of bacterial strains in soil and their effect on soybean growth under greenhouse conditions. Biol Fertil Soils 43:805–809

    Google Scholar 

  • Filius JD, Hiemstra T, Van Riemsdijk WH (1997) Adsorption of small weak organic acids on goethite: modeling of mechanisms. J Colloid Interface Sci 195:368–380

    CAS  PubMed  Google Scholar 

  • Foster RC, Dormaar JF (1991) Bacteria-grazing amebas in situ in the rhizosphere. Biol Fertil Soils 11:83–87

    Google Scholar 

  • Foth HD, Ellis BG (1997) Soil fertility. CRC, Boca Raton

    Google Scholar 

  • Frossard E, Skrabal P, Sinaj S, Bangerter F, Traore O (2002) Forms and exchangeability of inorganic phosphate in composted solid organic wastes. Nutr Cycl Agroecosys 62:103–113

    CAS  Google Scholar 

  • Frossard E, Achat DL, Bernasconi SM, Bünemann EK, Fardeau J-C, Jansa J, Morel C, Rabeharisoa L, Randriamanantsoa L, Sinaj S, Tamburini F, Oberson A (2011) The use of tracers to investigate phosphate cycling in soil–plant systems. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, vol 26. Springer, Heidelberg. doi:10.1007/978-3-642-15271-9_3

    Google Scholar 

  • Gächter R, Meyer JS (1993) The role of microorganisms in mobilization and fixation in sediments. Hydrobiologia 253:103–121

    Google Scholar 

  • Garcia-Gil JC, Plaza C, Soler-Rovira P, Polo A (2000) Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biol Biochem 32:1907–1913

    CAS  Google Scholar 

  • Gaume A, Weidler PG, Frossard E (2000) Effect of maize root mucilage on phosphate adsorption and exchangeability on a synthetic ferrihydrite. Biol Fertil Soils 31:525–532

    CAS  Google Scholar 

  • George TS, Gregory PJ, Robinson JS, Buresh RJ (2002) Changes in phosphorus concentrations and pH in the rhizosphere of some agroforestry and crop species. Plant Soil 246:65–73

    CAS  Google Scholar 

  • Gerke J, Beißner L, Römer W (2000) The quantitative effect of chemical phosphate mobilization by carboxylate anions on P uptake by a single root. I. The basic concept and determination of soil parameters. J Plant Nutr Soil Sci 163:207–212

    CAS  Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1389–1414

    CAS  Google Scholar 

  • Gonzalez-Chavez MDA, Newsam R, Linderman R, Dodd J, Valdez-Carrasco JM (2008) Bacteria associated with the extraradical mycelium of an arbuscular mycorrhizal fungus in an As/Cu polluted soil. Agrociencia 42:1–10

    Google Scholar 

  • Govindan K, Thirumurugan V (2005) Synergistic association of Rhizobium with phosphate-solubilizing bacteria under different sources of nutrient supply on productivity and soil fertility in soybean (Glycine max). Indian J Agron 50:214–217

    Google Scholar 

  • Grierson PF, Comerford NB, Jokela EJ (1998) Phosphorus mineralization kinetics and response of microbial phosphorus to drying and rewetting in a Florida Spododol. Soil Biol Biochem 30:1323–1331

    CAS  Google Scholar 

  • Gunes A, Ataoglu N, Turan M, Esitken A, Ketterings QM (2009) Effects of phosphate-solubilizing microorganisms on strawberry yield and nutrient concentrations. J Plant Nutr Soil Sci 172:385–392

    CAS  Google Scholar 

  • Gyaneshwar P, Parekh LJ, Archana G, Poole PS, Collins MD, Huston RA, Naresh Kumar G (1999) Involvement of a phosphate starvation inducible glucose dehydrogenase in soil phosphate solubilization by Enterobacter asburiae. FEMS Microbiol Lett 171:223–229

    CAS  Google Scholar 

  • Gyaneshwar P, Naresh Kumar G, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93

    CAS  Google Scholar 

  • Hamdali H, Hafidi M, Virolle MJ, Ouhdouch Y (2008a) Growth promotion and protection against damping-off of wheat by two rock phosphate solubilizing actinomycetes in a P-deficient soil under greenhouse conditions. Appl Soil Ecol 40:510–517

    Google Scholar 

  • Hamdali H, Hafidi M, Virolle MJ, Ouhdouch Y (2008b) Rock phosphate-solubilizing Actinomycetes: screening for plant growth-promoting activities. World J Microbiol Biotechnol 24:2565–2575

    CAS  Google Scholar 

  • Hamdali H, Bouizgarne B, Hafidi M, Lebrihi A, Virolle MJ, Ouhdouch Y (2008c) Screening for rock phosphate solubilizing Actinomycetes from Moroccan phosphate mines. Appl Soil Ecol 38:12–19

    Google Scholar 

  • Hamdali H, Smirnov A, Esnault C, Ouhdouch Y, Virolle MJ (2010) Physiological studies and comparative analysis of rock phosphate solubilization abilities of Actinomycetales originating from Moroccan phosphate mines and of Streptomyces lividans. Appl Soil Ecol 44:24–31

    Google Scholar 

  • Hariprasad P, Navya HM, Nayaka SC, Niranjana SR (2009) Advantage of using PSIRB over PSRB and IRB to improve plant health of tomato. Biol Control 50:307–316

    Google Scholar 

  • Harris WG (2002) Phosphate minerals. In: Dixon JB, Schulze DG (eds) Soil mineralogy with environmental applications, SSSA book series 7. SSSA, Madison, pp 637–665

    Google Scholar 

  • Harrison AF (1987) Soil organic phosphorus: a review of world literature. CABI, Wallingford

    Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195

    CAS  Google Scholar 

  • Hoberg E, Marschner P, Lieberei R (2005) Organic acid exudation and pH changes by Gordonia sp and Pseudomonas fluorescens grown with P adsorbed to goethite. Microbiol Res 160:177–187

    CAS  PubMed  Google Scholar 

  • Hu J, Lin X, Wang J, Chu H, Yin R, Zhang J (2009) Population size and specific potential of P-mineralizing and -solubilizing bacteria under long-term P-deficiency fertilization in a sandy loam soil. Pedobiologia 53:49–58

    CAS  Google Scholar 

  • Huang Q, Liang W, Cai P (2005) Adsorption, desorption and activities of acid phosphatase on various colloidal particles from an Ultisol. Colloid Surface B 45:209–241

    CAS  Google Scholar 

  • Huang XL, Chen Y, Shenker M (2008) Chemical fractionation of phosphorus in stabilized biosolids. J Environ Qual 37:1949–1958

    CAS  PubMed  Google Scholar 

  • Illmer P, Schinner F (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biol Biochem 24:389–395

    Google Scholar 

  • Illmer P, Barbato A, Schinner F (1995) Solubilization of hardly-soluble AlPO4 with P-solubilizing microorganisms. Soil Biol Biochem 27:265–270

    CAS  Google Scholar 

  • Intorne AC, de Oliveira MVV, Lima ML, da Silva JF, Olivares FL, de Souza GA (2009) Identification and characterization of Gluconacetobacter diazotrophicus mutants defective in the solubilization of phosphorus and zinc. Arch Microbiol 191:477–483

    CAS  PubMed  Google Scholar 

  • Ionescu M, Belkin S (2009) Overproduction of exopolysaccharides by an Escherichia coli K-12 rpoS mutant in response to osmotic stress. Appl Environ Microbiol 75:483–492

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jansa J, Finlay R, Wallander H, Smith FA, Smith SE (2011) Role of mycorrhizal symbioses in phosphorus cycling. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, vol 26. Springer, Heidelberg. doi:10.1007/978-3-642-15271-9_6

    Google Scholar 

  • Jilani G, Akram A, Ali RM, Hafeez FY, Shamsi IH, Chaudhry AN, Chaudhry AG (2007) Enhancing crop growth, nutrients availability, economics and beneficial rhizosphere microflora through organic and biofertilizers. Ann Microbiol 57:177–184

    CAS  Google Scholar 

  • Joergensen RG, Scheu S (1999) Response of soil microorganisms to the addition of carbon, nitrogen and phosphorus in a forest Rendzina. Soil Biol Biochem 31:859–866

    CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere – a critical review. Plant Soil 205:25–44

    CAS  Google Scholar 

  • Jones DL, Dennis PG, Owen AG, van Hees PAW (2003) Organic acid behaviour in soils misconceptions and knowledge gaps. Plant Soil 248:31–41

    CAS  Google Scholar 

  • Jorquera MA, Hernandez MT, Rengel Z, Marschner P, Mora MD (2008) Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biol Fertil Soils 44:1025–1034

    CAS  Google Scholar 

  • Juma NG, Tabatabai MA (1977) Effects of trace-elements on phosphatase-activity in soils. Soil Sci Soc Am J 41:343–346

    CAS  Google Scholar 

  • Juma NG, Tabatabai MA (1988) Hydrolysis of organic phosphates by corn and soybean roots. Plant Soil 107:31–38

    CAS  Google Scholar 

  • Kao PH, Huang CC, Hseu ZY (2006) Response of microbial activities to heavy metals in a neutral loamy soil treated with biosolid. Chemosphere 64:63–70

    CAS  PubMed  Google Scholar 

  • Khan MR, Khan SM (2001) Biomanagement of Fusarium wilt of tomato by the soil application of certain phosphate-solubilizing microorganisms. Int J Pest Manage 47:227–231

    Google Scholar 

  • Khan MS, Zaidi A (2007) Synergistic effects of the inoculation with plant growth-promoting rhizobacteria and an arbuscular mycorrhizal fungus on the performance of wheat. Turk J Agric For 31:355–362

    CAS  Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1998) Enterobacter agglomerans, phosphate solubilizing bacteria, and microbial activity in soil: effect of carbon sources. Soil Biol Biochem 30:995–1003

    CAS  Google Scholar 

  • Kucey RMN, Jenzen HH, Leggett ME (1989) Microbially mediated increases in plant available phosphorus. Adv Agron 42:199–228

    CAS  Google Scholar 

  • Lopez-Hernandez D, Lavelle P, Fardeau JC, Nino M (1993) Phosphorus transformations in two P-sorption contrasting tropical soils during transit through Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta). Soil Biol Biochem 25:789–792

    CAS  Google Scholar 

  • Lopez-Hernandez D, Bossard M, Frossard E (1998) P-isotopic exchange values in relation to Po mineralization in soils with very low P-sorbing capacities. Soil Biol Biochem 30:1663–1670

    CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    CAS  PubMed  Google Scholar 

  • Maguire RO, Hesterberg D, Gernat A, Anderson K, Wineland M, Grimes J (2006) Liming poultry manures to decrease soluble phosphorus and suppress the bacteria population. J Environ Qual 35:849–857

    CAS  PubMed  Google Scholar 

  • Malboobi MA, Behbahani M, Madani H, Owlia P, Deljou A, Yakhchali B, Moradi M, Hassanabadi H (2009) Performance evaluation of potent phosphate solubilizing bacteria in potato rhizosphere. World J Microbiol Biotechnol 25:1479–1484

    Google Scholar 

  • Mansfeld-Giese K, Larsen J, Bodker L (2002) Bacterial populations associated with mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. FEMS Microbiol Ecol 41:133–140

    CAS  PubMed  Google Scholar 

  • Martell AE, Smith RM (1977) Critical stability constants. Other organic ligands, vol 3. Plenum, New York

    Google Scholar 

  • Martens DA, Johanson JB, Frankenberger WT (1992) Production and persistence of soil enzymes with repeated addition of organic residues. Soil Sci 153:53–61

    CAS  Google Scholar 

  • Mba CC (1994) Field studies on two rock phosphate solubilizing Actinomycete isolates as biofertilizer sources. Environ Manage 18:263–269

    Google Scholar 

  • Mba CC (1997) Rock phosphate solubilizing Streptosporangium isolates from casts of tropical earthworms. Soil Biol Biochem 29:381–385

    CAS  Google Scholar 

  • McGill WB, Cole CV (1981) Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26:267–268

    CAS  Google Scholar 

  • Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, vol 26. Springer, Heidelberg. doi:10.1007/978-3-642-15271-9_9

    Google Scholar 

  • Oberson A, Joner EJ (2005) Microbial turnover of phosphorus in soil. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. CABI, Wallingford, pp 133–164

    Google Scholar 

  • Oberson A, Pypers P, Bünemann EK, Frossard E (2011) Management impacts on biological phosphorus cycling in cropped soils. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, vol 26. Springer, Heidelberg. doi:10.1007/978-3-642-15271-9_17

    Google Scholar 

  • Oburger E, Jones DL (2009) Substrate mineralization studies in the laboratory show different microbial C partitioning dynamics than in the field. Soil Biol Biochem 41:1951–1956

    CAS  Google Scholar 

  • Oburger E, Kirk GJD, Wenzel WW, Puschenreiter M, Jones DL (2009) Interactive effects of organic acids in the rhizosphere. Soil Biol Biochem 41:449–457

    CAS  Google Scholar 

  • Ochoa-Loza FJ, Artiola JF, Maier RM (2001) Stability constants for the complexation of various metals with a rhamnolipid biosurfactant. J Environ Qual 30:479–485

    CAS  PubMed  Google Scholar 

  • Odongo NE, Hyoung-Ho K, Choi HC, van Straaten P, McBride BW, Romney DL (2007) Improving rock phosphate availability through feeding, mixing and processing with composting manure. Bioresour Technol 98:2911–2918

    CAS  PubMed  Google Scholar 

  • Oehl F, Oberson A, Probst M, Fliessbach A, Roth HR, Frossard E (2001a) Kinetics of microbial phosphorus uptake in cultivated soils. Biol Fertil Soils 34:31–41

    Google Scholar 

  • Oehl F, Oberson A, Sinaj S, Frossard E (2001b) Organic phosphorus mineralization studies using isotopic dilution techniques. Soil Sci Soc Am J 65:780–787

    CAS  Google Scholar 

  • Okon Y, Labandera-Gonzalez CA (1994) (1994) Agronomic applications of Azospirillum – an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591–1601

    CAS  Google Scholar 

  • Olander LP, Vitousek PM (2000) Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry 49:175–190

    CAS  Google Scholar 

  • Oliveira CA, Alves VMC, Marriel IE, Gomes EA, Scotti MR, Carneiro NP, Guimaraes CT, Schaffert RE, Sa NMH (2009) Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biol Biochem 41:1782–1787

    CAS  Google Scholar 

  • Otani T, Ae N (1999) Extraction of organic phosphorus in Andosols by various methods. Soil Sci Plant Nutr 45:151–161

    CAS  Google Scholar 

  • Park KH, Lee CY, Son HJ (2009) Mechanism of insoluble phosphate solubilization by Pseudomonas fluorescens RAF15 isolated from ginseng rhizosphere and its plant growth-promoting activities. Lett Appl Microbiol 49:222–228

    PubMed  Google Scholar 

  • Parker DR, Reichmann SM, Crowley DE (2005) Metal chelation in the rhizosphere. In: Zobel RW (ed) Roots and soil management: interactions between roots and the soil. Agronomy monograph no. 48. American Society of Agronomy, Madison, pp 57–93

    Google Scholar 

  • Patel DK, Archana G, Naresh Kumar G (2008) Variation in the nature of organic acid secretion and mineral phosphate solubilization by Citrobacter sp. DHRSS in the presence of different sugars. Curr Microbiol 65:168–174

    Google Scholar 

  • Pedersen AL, Nybroe O, Winding A, Ekelund F, Bjornlund L (2009) Bacterial feeders, the nematode Caenorhabditis elegans and the flagellate Cercomonas longicauda, have different effects on outcome of competition among the Pseudomonas biocontrol strains CHA0 and DSS73. Microb Ecol 57:501–509

    PubMed  Google Scholar 

  • Quiquampoix H, Mousain D (2005) Enzymatic hydrolysis of organic phosphorus. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. CABI, Wallingford, pp 89–112

    Google Scholar 

  • Reid RK, Reid CPP, Szaniszlo PJ (1985) Effects of synthetic and microbially produced chelates on the diffusion of iron and phosphorus to a simulated root in soil. Biol Fertil Soils 1:45–52

    CAS  Google Scholar 

  • Renella G, Egamberdiyeva D, Landi L, Mench M, Nannipieri P (2006) Microbial activity and hydrolase activities during decomposition of root exudates released by an artificial root surface in Cd-contaminated soils. Soil Biol Biochem 38:702–708

    CAS  Google Scholar 

  • Reyes I, Bernier L, Simard RR, Antoun H (1999) Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants. FEMS Microbiol Ecol 28:281–290

    CAS  Google Scholar 

  • Richardson AE, Hocking PJ, Simpson RJ, George TS (2009a) Plant mechanisms to optimise access to soil phosphorus. Crop Pasture Sci 60:124–143

    CAS  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009b) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    CAS  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    CAS  PubMed  Google Scholar 

  • Rojo MJ, Carcedo SG, Mateos MP (1990) Distribution and characterization of phosphatase and organic phosphorus in soil fractions. Soil Biol Biochem 22:169–174

    CAS  Google Scholar 

  • Roos W, Luckner M (1984) Relationships between proton extrusion and fluxes of ammonium ions and organic acids in Penicillium cyclopium. J Gen Microbiol 130:1007–1014

    CAS  Google Scholar 

  • Rosenberg K, Bertaux J, Krome K, Hartmann A, Scheu S, Bonkowski M (2009) Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana. ISME J 3:675–684

    CAS  PubMed  Google Scholar 

  • Rudresh DL, Shivaprakash MK, Prasad RD (2005) Tricalcium phosphate solubilizing abilities of Trichoderma spp. in relation to P uptake and growth and yield parameters of chickpea (Cicer arietinum L.). Can J Microbiol 51:217–222

    CAS  PubMed  Google Scholar 

  • Rugheim AME, Abdelgani ME (2009) Substituting chemical fertilizers with microbial fertilizers for increasing productivity of Faba bean (Vicia faba L.) in arid lands. International Symposium on Environmental Science and Technology, June 2005, Shanghai, China

    Google Scholar 

  • Saha S, Prakash V, Kundu S, Kumar N, Mina BL (2008) Soil enzymatic activity as affected by long term application of farm yard manure and mineral fertilizer under a rainfed soybean-wheat system in N-W Himalaya. Eur J Soil Biol 44:309–315

    CAS  Google Scholar 

  • Sahin F, Cakmakci R, Kantar F (2004) Sugar beet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant Soil 265:123–129

    CAS  Google Scholar 

  • Sahu MK, Sivakumar K, Thangaradjou T, Kannan L (2007) Phosphate solubilizing Actinomycetes in the estuarine environment: an inventory. J Environ Biol 28:795–798

    CAS  PubMed  Google Scholar 

  • Sammauria R, Yadav RS, Nagar KC (2009) Performance of cluster bean (Cyamopsis tetragonoloba) as influenced by nitrogen and phosphorus fertilization and biofertilizers in Western Rajasthan. Indian J Agron 54:319–323

    Google Scholar 

  • Sample EC, Soper RJ, Racz GJ (1980) Reaction of phosphate fertilizers in soils. In: Khasawneh FE, Sample AC, Kamprath EJ (eds) The role of phosphorus in agriculture. ASA–CSSA–SSSA, Madison, pp 263–310

    Google Scholar 

  • Schwöppe C, Winkler HH, Neuhaus HE (2003) Connection of transport and sensing by UhpC, the sensor for external glucose-6-phosphate in Escherichia coli. Eur J Biochem 270:1450–1457

    PubMed  Google Scholar 

  • Sharan A, Shikha, Darmwal NS (2008) Efficient phosphorus solubilization by mutant strain of Xanthomonas campestris using different carbon, nitrogen and phosphorus sources. World J Microbiol Biotechnol 24:3087–3090

    Google Scholar 

  • Sharma SN, Prasad R (2003) Yield and P uptake by rice and wheat grown in a sequence as influenced by phosphate fertilization with diammonium phosphate and Mussoorie rock phosphate with or without crop residues and phosphate solubilizing bacteria. J Agric Sci 141:359–369

    CAS  Google Scholar 

  • Sharma SN, Prasad R, Shivay YS, Dwivedi MK, Kumar S, Kumar D (2009) Effect of rates and sources of phosphorus on productivity and economics of rice (Oryza sativa) as influenced by crop-residue incorporation. Indian J Agron 54:42–46

    CAS  Google Scholar 

  • Shober AL, Sims JT (2009) Evaluating phosphorus release from biosolids and manure-amended soils under anoxic conditions. J Environ Qual 38:309–318

    PubMed  Google Scholar 

  • Sims JT, Pierzynski GM (2005) Chemistry of phosphorus in soil. In: Tabatabai AM, Sparks DL (eds) Chemical processes in soil, SSSA book series 8. SSSA, Madison, pp 151–192

    Google Scholar 

  • Souchie EL, Abboud ACD (2007) Phosphate solubilization by microorganisms from the rhizosphere of Pigeonpea genotypes grown in different soil classes. Semina Cienc Agrar 28:11–18

    CAS  Google Scholar 

  • Sreenivas C, Narayanasamy G (2009) Role of earthworm (Eisenia fetida) and phosphate solubilising microorganism (Aspergillus awamori) in vermi-phosphocomposting. Res Crops 10:293–300

    Google Scholar 

  • Streeter JG (1994) Failure of inoculant rhizobia to overcome the dominance of indigenous strains for nodule formation. Can J Microbiol 40:513–522

    Google Scholar 

  • Ström L, Owen AG, Godbold DL, Jones DL (2005) Organic acid behaviour in a calcareous soil implications for rhizosphere nutrient cycling. Soil Biol Biochem 37:2046–2054

    Google Scholar 

  • Sud KC, Jatav MK (2007) Response of potato to phosphorus and phosphorus solubilizing bacteria in brown hill soils of Shimla. Potato J 34:109–110

    Google Scholar 

  • Sutaliya R, Singh RN (2005) Effect of planting time, fertility level and phosphate-solubilizing bacteria on growth, yield and yield attributes of winter maize (Zea mays) under rice (Oryza sativa)-maize cropping system. Indian J Agron 50:173–175

    CAS  Google Scholar 

  • Tabatabai MA (1994) Soil enzymes. In: Weaver RW (ed) Methods of soil analysis. Part 2. Microbial and biochemical properties. SSSA book series 5. SSSA, Madison

    Google Scholar 

  • Takeda M, Nakamoto T, Miyazawa K, Murayama T, Okada H (2009) Phosphorus availability and soil biological activity in an Andosol under compost application and winter cover cropping. Appl Soil Ecol 42:86–95

    Google Scholar 

  • Tang J, Leung A, Leung C, Lim BL (2006) Hydrolysis of precipitated phytate by three distinct families of phytases. Soil Biol Biochem 38:1316–1324

    CAS  Google Scholar 

  • Tarafdar JC, Yadav RS, Meena SC (2001) Comparative efficiency of acid phosphatase originated from plant and fungal sources. J Plant Nutr Soil Sci 164:279–282

    CAS  Google Scholar 

  • Tate KR, Salcedo I (1988) Phosphorus control of soil organic matter accumulation and cycling. Biogeochemistry 5:99–107

    CAS  Google Scholar 

  • Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284

    CAS  PubMed  Google Scholar 

  • Turner BL, McKelvie ID, Haygarth PM (2002) Characterisation of water-extractable soil organic phosphorus by phosphatase hydrolysis. Soil Biol Biochem 34:27–35

    CAS  Google Scholar 

  • Turner B, Driessen J, Haygarth P, McKelvie I (2003) Potential contribution of lysed bacterial cells to phosphorous solubilisation in two rewetted Australian pasture soils. Soil Biol Biochem 35:187–189

    CAS  Google Scholar 

  • Van Hees PAW, Vinogradoff SI, Edwards AC, Godbold DL, Jones DL (2003) Low molecular weight organic acid adsorption in forest soils: effects on solution concentration and biodegradation rates. Soil Biol Biochem 35:1025–1026

    Google Scholar 

  • Vassilev N, Vassileva M, Niklaeva I (2006) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potential and future trends. Appl Microbiol Biotechnol 71:137–144

    CAS  PubMed  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    CAS  Google Scholar 

  • Wakelin SA, Gupta VVSR, Harvey PR, Ryder MH (2007) The effect of Penicillium fungi on plant growth and phosphorus mobilization in neutral to alkaline soils from southern Australia. Can J Microbiol 53:106–115

    CAS  PubMed  Google Scholar 

  • Walker TW, Syers JK (1976) Fate of phosphorus during pedogenesis. Geoderma 15:1–19

    CAS  Google Scholar 

  • Wan JHC, Wong MH (2004) Effects of earthworm activity and P-solubilizing bacteria on P availability in soil. J Plant Nutr Soil Sci 167:209–213

    CAS  Google Scholar 

  • Whitelaw MA, Harden TJ, Bender GL (1997) Plant growth promotion of wheat inoculated with Penicillium radicum sp. Nov. Aust J Soil Res 35:291–300

    Google Scholar 

  • Whitelaw MA, Harden TJ, Helyar KR (1999) Phosphate solubilization in solution culture by the soil fungus Penicillium radicum. Soil Biol Biochem 31:655–665

    CAS  Google Scholar 

  • Wielbo J, Skorupska A (2008) Influence of phosphate and ammonia on the growth, exopolysaccharide production and symbiosis of Rhizobium leguminosarum bv. trifolii TA1 with clover (Trifolium pratense). Acta Biol Hung 59:115–127

    CAS  PubMed  Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Google Scholar 

  • Xiao C, Chi R, He H, Qiu G, Wang D, Zhang W (2009) Isolation of phosphate-solubilizing fungi from phosphate mines and their effect on wheat seedling growth. Appl Biochem Biotechnol 159:330–342

    CAS  PubMed  Google Scholar 

  • Yadav BK, Tarafdar JC (2007) Ability of Emericella rugulosa to mobilize unavailable P compounds during Pearl millet [Pennisetum glaucum (L.) R. Br.] crop under arid condition. Indian J Microbiol 47:57–63

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yi YM, Huang WY, Ge Y (2008) Exopolysaccharide: a novel important factor in the microbial dissolution of tricalcium phosphate. World J Microbiol Biotechnol 24:1059–1065

    CAS  Google Scholar 

  • Zhang X, Amelung WYY, Zech W (1998) Amino sugar signature of particle-size fractions in soils of the native prairie as affected by climate. Soil Sci 163:220–229

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Jones, D.L., Oburger, E. (2011). Solubilization of Phosphorus by Soil Microorganisms. In: Bünemann, E., Oberson, A., Frossard, E. (eds) Phosphorus in Action. Soil Biology, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15271-9_7

Download citation

Publish with us

Policies and ethics