The Coarsest Precongruences Respecting Safety and Liveness Properties

  • Robert Jan van Glabbeek
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 323)


This paper characterises the coarsest refinement preorders on labelled transition systems that are precongruences for renaming and partially synchronous interleaving operators, and respect all safety, liveness, and conditional liveness properties, respectively.


Composition Operator Linear Temporal Logic Safety Property Visible Action Label Transition System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alexander, M., Gardner, W. (eds.): Process Algebra for Parallel and Distributed Processing. Chapman & Hall, Boca Raton (2008)Google Scholar
  2. 2.
    Baeten, J.C.M., Bergstra, J.A.: Global renaming operators in concrete process algebra. Information and Computation 78(3), 205–245 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bergstra, J.A., Klop, J.W.: Algebra of communicating processes with abstraction. Theoretical Computer Science 37(1), 77–121 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential processes. Journal of the ACM 31(3), 560–599 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theoretical Computer Science 34, 83–133 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    van Glabbeek, R.J., Voorhoeve, M.: Liveness, Fairness and Impossible Futures. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 126–141. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    van Glabbeek, R.J.: The Linear Time – Branching Time Spectrum I; The Semantics of Concrete, Sequential Processes. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, ch.1, pp. 3–99. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  8. 8.
    Kaivola, R., Valmari, A.: The Weakest Compositional Semantic Equivalence Preserving Nexttime-less Linear Temporal Logic. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 207–221. Springer, Heidelberg (1992), CrossRefGoogle Scholar
  9. 9.
    Lamport, L.: Proving the correctness of multiprocess programs. IEEE Transactions on Software Engineering 3(2), 125–143 (1977)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Lamport, L.: Proving Possibility Properties. Theoretical Computer Science 206(1-2), 341–352 (1998), zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Levy, P.B.: Infinite trace equivalence. Annals of Pure and Applied Logic 151(2-3), 170–198 (2008), zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Milner, R.: Operational and algebraic semantics of concurrent processes. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, ch.19, pp. 1201–1242. Elsevier Science Publishers B.V, North-Holland (1990); Alternatively see Communication and Concurrency. Prentice-Hall, Englewood Cliffs, (1989), an earlier version appeared as A Calculus of Communicating systems. LNCS, vol. 92. Springer, Heidelberg (1980)Google Scholar
  13. 13.
    Puhakka, A.: Weakest Congruence Results Concerning “Any-Lock”. In: Kobayashi, N., Pierce, B.C. (eds.) TACS 2001. LNCS, vol. 2215, pp. 400–419. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Roscoe, A.W.: Seeing Beyond Divergence. In: Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.) Communicating Sequential Processes. LNCS, vol. 3525, pp. 15–35. Springer, Heidelberg (2005)Google Scholar
  15. 15.
    Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall, Englewood Cliffs (1997), Google Scholar

Copyright information

© IFIP 2010

Authors and Affiliations

  • Robert Jan van Glabbeek
    • 1
    • 2
  1. 1.NICTASydneyAustralia
  2. 2.School of Computer Sc. and Eng.Univ. of New South WalesSydneyAustralia

Personalised recommendations