Advertisement

Proof System for Applied Pi Calculus

  • Jia Liu
  • Huimin Lin
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 323)

Abstract

A symbolic-style proof system is presented to reason about observational equivalence for applied pi-calculus. The proofs of the soundness and completeness of the system rely on a recently developed theory of symbolic bisimulation for applied pi-calculus. The completeness result of the proof system is restricted to the finite fragment of applied pi-calculus which admits finite partition, and it is demonstrated that this fragment covers an important subset of applied pi-calculus which is practically useful for analyzing security protocols.

Keywords

Equational Theory Proof System Extended Process Symbolic Transition Equivalence Capture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In: POPL, pp. 104–115 (2001)Google Scholar
  2. 2.
    Baudet, M.: Deciding security of protocols against off-line guessing attacks. In: CCS ’05: Proceedings of the 12th ACM conference on Computer and communications security, pp. 16–25. ACM, New York (2005)CrossRefGoogle Scholar
  3. 3.
    Boreale, M., De Nicola, R.: A symbolic semantics for the pi-calculus (extended abstract). In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 299–314. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  4. 4.
    Borgström, J.: A complete symbolic bisimilarity for an extended spi calculus. Electron. Notes Theor. Comput. Sci. 242(3) (2009)Google Scholar
  5. 5.
    Cheval, V., Comon-Lundh, H., Delaune, S.: A decision procedure for proving observational equivalence. In: Boreale, M., Kremer, S. (eds.) Preliminary Proceedings of the 7th International Workshop on Security Issues in Coordination Models, Languages and Systems (SecCo’09), Bologna, Italy (October 2009)Google Scholar
  6. 6.
    Clark, J., Jacob, J.: A survey of authentication protocol literature (1997), http://www.cs.york.ac.uk/~jac/papers/drareviewps.ps
  7. 7.
    Comon-Lundh, H., Cortier, V.: Computational soundness of observational equivalence. In: CCS ’08: Proceedings of the 15th ACM Conference on Computer and Communications Security, pp. 109–118. ACM, New York (2008)CrossRefGoogle Scholar
  8. 8.
    Cortier, V., Delaune, S.: A method for proving observational equivalence. In: Proceedings of the 22nd IEEE Computer Security Foundations Symposium (CSF’09), Port Jefferson, NY, USA, July 2009, pp. 266–276. IEEE Computer Society Press, Los Alamitos (2009)CrossRefGoogle Scholar
  9. 9.
    Delaune, S., Kremer, S., Ryan, M.D.: Symbolic bisimulation for the applied pi calculus. In: FSTTCS, pp. 133–145 (2007)Google Scholar
  10. 10.
    Hennessy, M.: A proof system for communicating processes with value-passing (extended abstract). In: Veni Madhavan, C.E. (ed.) FSTTCS 1989. LNCS, vol. 405, pp. 325–339. Springer, Heidelberg (1989)Google Scholar
  11. 11.
    Hennessy, M., Lin, H.: Symbolic bisimulations. Theor. Comput. Sci. 138(2), 353–389 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hennessy, M., Lin, H.: Proof systems for message-passing process algebras. Formal Asp. Comput. 8(4), 379–407 (1996)zbMATHCrossRefGoogle Scholar
  13. 13.
    Johansson, M., Victor, B., Parrow, J.: A fully abstract symbolic semantics for psi-calculi. Accepted for SOS’09 (2009)Google Scholar
  14. 14.
    Lin, H.: Complete inference systems for weak bisimulation equivalences in the pi-calculus. Inf. Comput. 180(1), 1–29 (2003)zbMATHCrossRefGoogle Scholar
  15. 15.
    Liu, J., Lin, H.: A complete symbolic bisimulation for full applied pi calculus. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 552–563. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Parrow, J., Sangiorgi, D.: Algebraic theories for name-passing calculi. Information and Computation 120, 174–197 (1994)CrossRefMathSciNetGoogle Scholar

Copyright information

© IFIP 2010

Authors and Affiliations

  • Jia Liu
    • 1
    • 2
  • Huimin Lin
    • 1
  1. 1.State Key Laboratory of Computer Science, Institute of SoftwareChinese Academy of Sciences 
  2. 2.Chinese Academy of SciencesGraduate University 

Personalised recommendations