The Theoretician’s Gambits: Scientific Representations, Their Formats and Content

  • Marion Vorms
Part of the Studies in Computational Intelligence book series (SCI, volume 314)


It is quite widely acknowledged, in the field of cognitive science, that the format in which a set of data is displayed (lists, graphs, arrays, etc.) matters to the agents’ performances in achieving various cognitive tasks, such as problem-solving or decision-making. This paper intends to show that formats also matter in the case of theoretical representations, namely general representations expressing hypotheses, and not only in the case of data displays. Indeed, scientists have limited cognitive abilities, and representations in different formats have different inferential affordances for them. Moreover, this paper shows that, once agents and their limited cognitive abilities get into the picture, one has to take into account both the way content is formatted and the cognitive abilities and epistemic peculiarities of agents. This paves the way to a dynamic and pragmatic picture of theorizing, as a cognitive activity consisting in creating new inferential pathways between representations.


Cognitive Ability Classical Mechanic Informational Content Symbol System External Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, J.: Representational types: A tricode proposal. Tech. Rep. 82.1, Office of Naval Research, Washington, D.C. (1984)Google Scholar
  2. 2.
    Clark, A.: Supersizing the Mind. Embodiement, Action, and Cognitive Extension. Oxford University Press, Oxford (2008)Google Scholar
  3. 3.
    Clark, A., Chalmers, D.J.: The extended mind. Analysis 58(1), 7–19 (1998)CrossRefGoogle Scholar
  4. 4.
    Dyson, F.J.: The S matrix in quantum electrodynamics. Physical Review 75, 1736–1755 (1949)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dyson, F.J.: The radiation theories of Tomonaga, Schwinger, and Feynman. Physical Review 75, 486–502 (1949)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dyson, F.J.: Advanced quantum mechanics, Mimeographed notes from lectures delivered at Cornell (1951)Google Scholar
  7. 7.
    Dyson, F.J.: Old and new fashions in field theory. Physics Today 18, 21–24 (1965)CrossRefGoogle Scholar
  8. 8.
    Feynman, R.: Space-time approach to quantum electrodynamics. Physical Review 76(6), 769–789 (1949)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Feynman, R.: The Character of Physical Law. MIT Press, Cambridge (1965)Google Scholar
  10. 10.
    Floridi, L.: Information. In: Floridi, L. (ed.) The Blackwell Guide to the Philosophy of Computing and Information, pp. 40–61 (2004)Google Scholar
  11. 11.
    Goodman, N.: Languages of Art. An Approach to a Theory of Symbols, 2nd edn. Hackett Publishing Company (1976) (1968/1976)Google Scholar
  12. 12.
    Greenberg, M., Harman, G.: Conceptual role semantics. In: Lepore, E., Smith, B.S. (eds.) The Oxford Handbook of Philosophy of Language, pp. 295–322. Clarendon Press, Oxford (2006)Google Scholar
  13. 13.
    Haugeland, J.: Representational genera. In: Ramsey, W., Stich, S., Rumelhart, D. (eds.) Philosophy and Connectionist Theory, Lawrence Erlbaum, Hillsdale (1991); Reprint in Haugeland, J.: Having Thought, pp. 171–206. Harvard University Press, Cambridge (1998)Google Scholar
  14. 14.
    Hempel, C.G.: The theoretician’s dilemma. In: Feigl, H., Scriven, M., Maxwell, G. (eds.) Concepts, Theories, and the Mind-Body Problem. Minnesota Studies in the Philosophy of Science, vol. 2. University of Minnesota Press, Minneapolis (1958)Google Scholar
  15. 15.
    Hollan, J., Hutchins, E., Kirsh, D.: Distributed cognition: Toward a new foundation for human-computer interaction research. ACM Transactions on Computer-Human Interaction 7(2), 174–196 (2000)CrossRefGoogle Scholar
  16. 16.
    Humphreys, P.W.: Extending Ourselves. In: Computational Science, Empiricism, and Scientific Method. Oxford University Press, Oxford (2004)Google Scholar
  17. 17.
    Hutchins, E.: Cognition in the Wild. MIT Press, Cambridge (1995)Google Scholar
  18. 18.
    Kaiser, D.: Stick-figure realism: Conventions, reification, and the persistence of Feynman diagrams, 1948-1964. Representations 70, 49–86 (2000)CrossRefGoogle Scholar
  19. 19.
    Kaiser, D.: Drawing Theories Apart: The Dispersion of Feynman Diagrams in Postwar Physics. University of Chicago Press, Chicago (2005)zbMATHGoogle Scholar
  20. 20.
    Kirsh, D.: When is information explicitly represented? In: Hanson, P. (ed.) Information, Language, and Cognition, University of British Columbia, Vancouver (1991)Google Scholar
  21. 21.
    Kleinmuntz, D., Schkade, D.: Information displays and decision processes. Psychological Science 4(4), 221–227 (1993)CrossRefGoogle Scholar
  22. 22.
    Kuhn, T.S.: Second thoughts on paradigms. In: Suppe, F. (ed.) The Structure of Scientific Theories, pp. 459–482. University of Illinois Press, Champaign (1974/1977)Google Scholar
  23. 23.
    Kulvicki, J.: Knowing with images: Medium and message. Philosophy of Science 77(2), 295–313 (2010)CrossRefGoogle Scholar
  24. 24.
    Nickerson, R.S.: Technology and cognition amplification. In: Sternberg, R.J., Preiss, D.D. (eds.) Intelligence and Technology: The Impact of Tools on the Nature and Dvelopment of Human Abilities. Lawrence Erlbaum, Mahwah (2005)Google Scholar
  25. 25.
    Schwinger, J.: On quantum-electrodynamics and the magnetic moment of the electron. Physical Review 73, 416–417 (1948)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Schwinger, J.: Quantum electrodynamics. Physical Review 74, 439–461 (1948)CrossRefGoogle Scholar
  27. 27.
    Shin, S.: The Logical Status of Diagrams. Cambridge University Press, Cambridge (1994)zbMATHGoogle Scholar
  28. 28.
    Simon, H.A., Larkin, J.H.: Why a diagram is (sometimes) worth ten thousand words. Cognitive Science 11, 65–99 (1987)zbMATHCrossRefGoogle Scholar
  29. 29.
    Stenning, K., Oberlander, J.: A cognitive theory of graphical and linguistic reasoning: Logic and implementation. Cognitive Science 19(1), 97–140 (1995)CrossRefGoogle Scholar
  30. 30.
    Tufte, E.: The Visual Display of Quantitative Information. Graphics press, Cheshire (1983)Google Scholar
  31. 31.
    Tufte, E.: Envisioning Information. Graphics press, Cheshire (1990)Google Scholar
  32. 32.
    Vorms, M.: Formats of representation in scientific theorizing. In: Humphreys Paul, W., Imbert, C. (eds.) Representations, Models, and Simulations, Routledge (forthcoming)Google Scholar
  33. 33.
    Woody, A.: More telltale signs: What attention to representation reveals about scientific explanation. In: Philosophy of Science Proceedings of the 2002 Biennial Meetings of the Philosophy of Science Association, vol. 71(5), pp. 780–793 (2004)Google Scholar
  34. 34.
    Zhang, J.: A representational analysis of relational information displays. International Journal of Human-Computer Studies 45, 59–74 (1996)CrossRefGoogle Scholar
  35. 35.
    Zhang, J.: The nature of external representations in problem solving. Cognitive Science 21(2), 179–217 (1997)CrossRefGoogle Scholar
  36. 36.
    Zhang, J.: External representations in complex information processing tasks. Encyclopedia of library and information science 68(31), 164–180 (2000)Google Scholar
  37. 37.
    Zhang, J., Norman, D.A.: Representations in distributed cognitive tasks. Cognitive Science 18, 87–122 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marion Vorms
    • 1
  1. 1.Institut d’Histoire et de Philosophie des Sciences et des Techniques (CNRS)ParisFrance

Personalised recommendations