Advertisement

Constructive Research and Info-computational Knowledge Generation

  • Gordana Dodig Crnkovic
Part of the Studies in Computational Intelligence book series (SCI, volume 314)

Abstract

It is usual when writing on research methodology in dissertations and thesis work within Software Engineering to refer to Empirical Methods, Grounded Theory and Action Research. Analysis of Constructive Research Methods which are fundamental for all knowledge production and especially for concept formation, modeling and the use of artifacts is seldom given, so the relevant first-hand knowledge is missing. This article argues for introducing of the analysis of Constructive Research Methods, as crucial for understanding of research process and knowledge production. The paper provides characterization of the Constructive Research Method and its relations to Action Research and Grounded Theory. Illustrative examples from Software Engineering, Cognitive Science and Brain Simulation are presented. Finally, foundations of Constructive Research are analyzed within the framework of Info-Computationalism.

Keywords

Knowledge Production Turing Machine Ground Theory Natural Computation Cognitive Artifact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dodig-Crnkovic, G.: Shifting the paradigm of the philosophy of science: the philosophy of information and a new renaissance. Minds and Machines 13, 521–536 (2003), http://www.springerlink.com/content/g14t483510156726 CrossRefGoogle Scholar
  2. 2.
    Dodig-Crnkovic, G., Müller, V.: A dialogue concerning two world systems: Info-computational vs. mechanistic. In: Dodig-Crnkovic, G., Burgin, M. (eds.) Information and Computation. Series in Information Studies. World Scientific Publishing Co., Singapore (2010) (forthcoming)Google Scholar
  3. 3.
    Saalmann, G.: Arguments opposing the radicalism of radical constructivism. Constructivist Foundations 3, 16–18 (2007)Google Scholar
  4. 4.
    Ackermann, E.: Piaget’s constructivism, Papert’s constructionism: What’s the difference? In: Constructivism: uses and perspectives in education, vol. 1, 2, pp. 85–94, Geneva, Research Center in Education (2001)Google Scholar
  5. 5.
    Riegler, A.: Towards a radical constructivist understanding of science. Foundations of Science 6(1), 1–30 (2001)CrossRefGoogle Scholar
  6. 6.
    von Foerster, H.: Understanding Understanding: Essays on Cybernetics and Cognition. Springer, Heidelberg (2003)Google Scholar
  7. 7.
    Kant, I.: Critique of pure reason. St Martin’s Press, New York (1965)Google Scholar
  8. 8.
    Nersessian, N.J.: How do engineering scientists think? Model-based simulation in biomedical engineering laboratories. Topics in Cognitive Science 1, 730–757 (2009)CrossRefGoogle Scholar
  9. 9.
    Magnani, L.: Model-based and manipulative abduction in science. Foundations of Science 9, 219–247 (2004)CrossRefGoogle Scholar
  10. 10.
    Lukka, K.: The constructive research approach. In: Ojala, L., Hilmola, O.-P. (eds.) Case study research in logistics. Publications of the Turku School of Economics and Business Administration. Series B 1, pp. 83–101 (2003)Google Scholar
  11. 11.
    Kasanen, E., Lukka, K., Sintonen, A.: The constructive approach in management accounting research. Journal of Management Accounting Research 5(1), 243–263 (1993)Google Scholar
  12. 12.
    Lázaro, M., Marcos, E.: Research in software engineering: Paradigms and methods. In: J. Castro, E. Teniente (eds.) Advanced Information Systems Engineering, 17th International Conference, pp. 517–522. CAiSE 2005, Porto, Portugal, Proceedings of the CAiSE 05 Workshops, 2 (2005)Google Scholar
  13. 13.
    Lavrishcheva, E.M.: Software engineering as a scientific and engineering discipline. Cybernetics and Systems Analysis 44 (2008)Google Scholar
  14. 14.
    Vaishnavi, V., Kuechler, W.: Design Research in Information Systems (2004), http://ais.affiniscape.com/displaycommon.cfm?an=1&subarticlenbr=279
  15. 15.
    Magnani, L., Nersessian, N., Thagard, P. (eds.): Model-Based Reasoning in Scientific Discovery. Plenum, New York (2000), Chinese translation published by China, Science and Technology PressGoogle Scholar
  16. 16.
    Thagard, P.: Conceptual Revolutions. Princeton University Press, Princeton (1992)Google Scholar
  17. 17.
    Lewin, K.: Resolving Social Conflicts. In: Lewin, G.W. (ed.) Selected Papers on Group Dynamics, Harper & Row, New York (1948)Google Scholar
  18. 18.
    Oquist, P.: The epistemology of action research. Acta Sociologica 21, 143–163 (1978)Google Scholar
  19. 19.
    Shaw, M.: The coming-of-age of software architecture research. In: Proceedings of ICSE-2001, pp. 657–664. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  20. 20.
    Benavides, D., et al.: The triple schizophrenia of the software engineering researcher. In: Castro, J., Teniente, E. (eds.) Advanced Information Systems Engineering, 17th International Conference, Proceedings of the CAiSE 2005 Workshops, vol. 2, pp. 529–534 (2005)Google Scholar
  21. 21.
    Stauffer, D., de Oliveira, S.M., de Oliveira, P.M.C., Sa Martins, J.S.: Biology, Sociology, Geology by Computational Physicists. Monograph Series on Nonlinear Science and Complexity. Elsevier, Amsterdam (2006)zbMATHGoogle Scholar
  22. 22.
    Dodig-Crnkovic, G.: Information and Computation Nets. VDM Verlag (2009)Google Scholar
  23. 23.
    Dodig-Crnkovic, G.: Knowledge generation as natural computation. Journal of Systemics, Cybernetics and Informatics 6 (2008)Google Scholar
  24. 24.
    MacLennan, B.: Natural computation and non-Turing models of computation. Theoretical Computer Science 317, 115–145 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Dodig-Crnkovic, G.: Investigations into Information Semantics and Ethics of Computing. Mälardalen University Press (2006)Google Scholar
  26. 26.
    Zeilinger, A.: The message of the quantum. Nature 438, 743 (2005)CrossRefGoogle Scholar
  27. 27.
    Floridi, L.: Against digital ontology. Synthese 168, 151–178 (2009)zbMATHCrossRefGoogle Scholar
  28. 28.
    Floridi, L.: A defence of informational structural realism. Synthese 161, 219–253 (2008)CrossRefGoogle Scholar
  29. 29.
    Chaitin, G.: Epistemology as information Theory. In: Dodig-Crnkovic, G., Stuart, S. (eds.) Computation, Information, Cognition – The Nexus and The Liminal, pp. 2–18. Cambridge Scholars Publishing (2007), http://www.cs.auckland.ac.nz/~chaitin/ecap.html
  30. 30.
    Burgin, M.: Information dynamics in a categorical setting. In: Dodig-Crnkovic, G., Burgin, M. (eds.) Information and Computation. Series in Information Studies, World Scientific Publishing Co., Singapore (2010) (forthcoming)Google Scholar
  31. 31.
    Gell-Mann, M.: The Quark and the Jaguar: Adventures in the Simple and the Complex. Owl Books (1995)Google Scholar
  32. 32.
    Minsky, M.: Interior grounding, reflection, and self-consciousness. In: Dodig-Crnkovic, G., Burgin, M. (eds.) Information and Computation. Series in Information Studies. World Scientific Publishing Co., Singapore (2010) (forthcoming)Google Scholar
  33. 33.
    Goertzel, B.: The Evolving Mind. Gordon and Breach (1993)Google Scholar
  34. 34.
    Hoffman, D.: The interface theory of perception: Natural selection drives true perception to swift extinction. In: Object Categorization: Computer and Human Perspectives. Cambridge University Press, Cambridge (2009)Google Scholar
  35. 35.
    Burgin, M.: Super-Recursive Algorithms. Springer Monographs in Computer Science (2005)Google Scholar
  36. 36.
    Wegner, P.: Interactive foundations of computing. Theoretical Computer Science 192, 315–351 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Kampis, G.: Self-Modifying Systems in Biology and Cognitive Science: A New Framework for Dynamics, Information and Complexity. Pergamon Press, Oxford (1991)Google Scholar
  38. 38.
    Kurzweil, R.: The Singularity is Near. Viking, New York (2005)Google Scholar
  39. 39.
    Harms, W.F.: Information and Meaning in Evolutionary Processes. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  40. 40.
    Harms, W.F.: Naturalizing epistemology: Prospectus 2006. Biological Theory 1, 23–24 (2006)CrossRefGoogle Scholar
  41. 41.
    Okasha, S.: Review of William F. Harms, information and meaning in evolutionary processes. Notre Dame Philosophical Reviews 12 (2005)Google Scholar
  42. 42.
    Maturana, H., Varela, F.: Autopoiesis and cognition: The realization of the living. In: Cohen, R.S., Wartofsky, M.W. (eds.) Boston Studies in the Philosophy of Science, vol. 42. D. Reidel Publishing, Dordecht (1980)Google Scholar
  43. 43.
    Maturana, H., Varela, F.: The Tree of Knowledge. Shambala (1992)Google Scholar
  44. 44.
    Kaneko, K., Tsuda, I.: Complex Systems: Chaos and Beyond. A Constructive Approach With Applications in Life Sciences. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  45. 45.
    Ballard, D.: Our perception of the world has to be an illusion. Journal of Consciousness Studies 9, 54–71 (2002)Google Scholar
  46. 46.
    Nørretranders, T.: The User Illusion: Cutting Consciousness Down to Size, translated by Jonathan Sydenham. Viking, New York (1999)Google Scholar
  47. 47.
    Maturana, H.: Systemic versus genetic determination. Constructivist Foundations 3, 21–26 (2007)MathSciNetGoogle Scholar
  48. 48.
    Heylighen, F., Joslyn, C.: Cybernetics and second order cybernetics. In: Meyers, R.A. (ed.) Encyclopedia of Physical Science & Technology, 3rd edn., vol. 4, pp. 155–170. Academic Press, New York (2001)Google Scholar
  49. 49.
    Scripps Research Institute.: Lifeless prions capable of evolutionary change and adaptation. ScienceDaily (January 3, 2010), http://www.sciencedaily.com/releases/2009/12/091231164747.htm (Retrieved January 12, 2010)
  50. 50.
    von Glasersfeld, E.: Radical constructivism: A way of knowing and learning. Falmer Press, London (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Gordana Dodig Crnkovic
    • 1
  1. 1.School of Innovation, Design and Engineering, Computer Science LaboratoryMälardalen UniversitySweden

Personalised recommendations