Skip to main content

Using Analogical Representations for Mathematical Concept Formation

  • Chapter
Model-Based Reasoning in Science and Technology

Part of the book series: Studies in Computational Intelligence ((SCI,volume 314))

Abstract

We argue that visual, analogical representations of mathematical concepts can be used by automated theory formation systems to develop further concepts and conjectures in mathematics. We consider the role of visual reasoning in human development of mathematics, and consider some aspects of the relationship between mathematics and the visual, including artists using mathematics as inspiration for their art (which may then feed back into mathematical development), the idea of using visual beauty to evaluate mathematics, mathematics which is visually pleasing, and ways of using the visual to develop mathematical concepts. We motivate an analogical representation of number types with examples of “visual” concepts and conjectures, and present an automated case study in which we enable an automated theory formation program to read this type of visual, analogical representation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, R.: John Robinson’s symbolic sculptures: Knots and mathematics. In: Emmer, M. (ed.) The visual mind II, pp. 125–139. MIT Press, Cambridge (2005)

    Google Scholar 

  2. Chalmers, D., French, R., Hofstadter, D.: High-level perception, representation, and analogy: A critique of artificial intelligence methodology. Journal of Experimental and Theoretical Artificial Intelligence 4, 185–211 (1992)

    Article  Google Scholar 

  3. Colton, S.: Automated Theory Formation in Pure Mathematics. Springer, Heidelberg (2002)

    Google Scholar 

  4. Colton, S., Bundy, A., Walsh, T.: On the notion of interestingness in automated mathematical discovery. International Journal of Human Computer Studies 53(3), 351–375 (2000)

    Article  MATH  Google Scholar 

  5. Colton, S., Valstar, M., Pantic, M.: Emotionally aware automated portrait painting. In: Proceedings of the 3rd International Conference on Digital Interactive Media in Entertainment and Arts, DIMEA (2008)

    Google Scholar 

  6. Davis, R.B., Maher, C.A.: How students think: The role of representations. In: English, L.D. (ed.) Mathematical Reasoning: Analogies, Metaphors, and Images, pp. 93–115. Lawrence Erlbaum, Mahwah (1997)

    Google Scholar 

  7. Dürer, A.: Underweysung der Messung (Four Books on Measurement) (1525)

    Google Scholar 

  8. Epstein, S.L.: Learning and discovery: One system’s search for mathematical knowledge. Computational Intelligence 4(1), 42–53 (1988)

    Article  Google Scholar 

  9. Ernest, P.: John Ernest, a mathematical artist. Philosophy of Mathematics Education Journal. Special Issue on Mathematics and Art 24 (December 2009)

    Google Scholar 

  10. Escher, M.C., Ernst, B.: The Magic Mirror of M.C. Escher. Taschen GmbH (2007)

    Google Scholar 

  11. Fajtlowicz, S.: On conjectures of Graffiti. Discrete Mathematics 72, 113–118 (1988)

    Article  MathSciNet  Google Scholar 

  12. Giaquinto, M.: Mathematical activity. In: Mancosu, P., Jørgensen, K.F., Pedersen, S.A. (eds.) Visualization, Explanation and Reasoning Styles in Mathematics, pp. 75–87. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Hadamard., J.: The Psychology of Invention in the Mathematical Field. Dover (1949)

    Google Scholar 

  14. Hardy, G.H.: A Mathematician’s Apology. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  15. Heath, T.L.: A History of Greek Mathematics: From Thales to Euclid, vol. 1. Dover Publications Inc. (1981)

    Google Scholar 

  16. Jackson, A.: The world of blind mathematicians. Notices of the AMS 49(10), 1246–1251 (2002)

    MATH  Google Scholar 

  17. Krutestskii, V.A.: The psychology of mathematical abilities in schoolchildren. University of Chicago Press, Chicago (1976)

    Google Scholar 

  18. Kulpa, Z.: Main problems of diagrammatic reasoning. part i: The generalization problem. In: Aberdein, A., Dove, I. (eds.) Foundations of Science, Special Issue on Mathematics and Argumentation, vol. 14(1-2), pp. 75–96. Springer, Heidelberg (2009)

    Google Scholar 

  19. Lakoff, G., Núñez, R.: Where Mathematics Comes From: How the Embodied Mind Brings Mathematics into Being. Basic Books Inc., U.S.A (2001)

    Google Scholar 

  20. Landy, D., Goldstone, R.L.: How we learn about things we don’t already understand. Journal of Experimental and Theoretical Artificial Intelligence 17, 343–369 (2005)

    Article  Google Scholar 

  21. Lenat, D.: AM: An Artificial Intelligence approach to discovery in mathematics. PhD thesis, Stanford University (1976)

    Google Scholar 

  22. Machtinger, D.D.: Experimental course report: Kindergarten. Technical Report 2, The Madison Project, Webster Groves, MO (July 1965)

    Google Scholar 

  23. Penrose, R.: The role of aesthetics in pure and applied mathematical research. In: Penrose, R. (ed.) Roger Penrose: Collected Works, vol. 2. Oxford University Press, Oxford (2009)

    Google Scholar 

  24. Presmeg, N.C.: Visualisation and mathematical giftedness. Journal of Educational Studies in Mathematics 17(3), 297–311 (1986)

    Article  Google Scholar 

  25. Presmeg, N.C.: Prototypes, metaphors, metonymies and imaginative rationality in high school mathematics. Educational Studies in Mathematics 23(6), 595–610 (1992)

    Article  Google Scholar 

  26. Presmeg, N.C.: Generalization using imagery in mathematics. In: English, L.D. (ed.) Mathematical Reasoning: Analogies, Metaphors, and Images, pp. 299–312. Lawrence Erlbaum, Mahwah (1997)

    Google Scholar 

  27. Sims, M.H., Bresina, J.L.: Discovering mathematical operator definitions. In: Proceedings of the Sixth International Workshop on Machine Learning, Morgan Kaufmann, San Francisco (1989)

    Google Scholar 

  28. Sinclair, N.: The roles of the aesthetic in mathematical inquiry. Mathematical Thinking and Learning 6(3), 261–284 (2004)

    Article  Google Scholar 

  29. Sloman, A.: Interactions between philosophy and artificial intelligence: The role of intuition and non-logical reasoning in intelligence. Artificial Intelligence 2, 209–225 (1971)

    Article  Google Scholar 

  30. Sloman, A.: Afterthoughts on analogical representation. In: Theoretical Issues in Natural Language Processing (TINLAP-1), pp. 431–439 (1975)

    Google Scholar 

  31. Tennant, N.: The withering away of formal semantics? Mind and Language 1, 302–318 (1986)

    Article  Google Scholar 

  32. von Neumann, J.: The mathematician. In: Newman, J. (ed.) The world of mathematics, pp. 2053–2065. Simon and Schuster, New York (1956)

    Google Scholar 

  33. Wells, D.: The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books Ltd., London (1997)

    Google Scholar 

  34. Wheatley, G.H.: Reasoning with images in mathematical activity. In: English, L.D. (ed.) Mathematical Reasoning: Analogies, Metaphors, and Images, pp. 281–297. Lawrence Erlbaum, Mahwah (1997)

    Google Scholar 

  35. Winterstein, D.: Using Diagrammatic Reasoning for Theorem Proving in a Continuous Domain. PhD thesis, University of Edinburgh (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pease, A., Colton, S., Ramezani, R., Smaill, A., Guhe, M. (2010). Using Analogical Representations for Mathematical Concept Formation. In: Magnani, L., Carnielli, W., Pizzi, C. (eds) Model-Based Reasoning in Science and Technology. Studies in Computational Intelligence, vol 314. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15223-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15223-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15222-1

  • Online ISBN: 978-3-642-15223-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics