Skip to main content

A Novel Approach to Solve Multiple Traveling Salesmen Problem by Genetic Algorithm

  • Chapter
Computational Intelligence in Engineering

Part of the book series: Studies in Computational Intelligence ((SCI,volume 313))

Abstract

The multiple Traveling Salesman Problem (mTSP) is a complex combinatorial optimization problem, which is a generalization of the well-known Traveling Salesman Problem (TSP), where one or more salesmen can be used in the solution. The optimization task can be described as follows: given a fleet of vehicles, a common depot and several requests by the customers, find the set of routes with overall minimum route cost which service all the demands. Because of the fact that TSP is already a complex, namely an NP-complete problem, heuristic optimization algorithms, like genetic algorithms (GAs) need to take into account. The extension of classical GA tools for mTSP is not a trivial problem, it requires special, interpretable encoding to ensure efficiency. The aim of this paper is to review how genetic algorithms can be applied to solve these problems and propose a novel, easily interpretable representation based GA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ali, A.I., Kennington, J.L.: The Asymmetric m-Traveling Salesmen Problem: a Duality-based Branch-and-Bound Algorithm. Discrete Applied Mathematics 13, 259–276 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  2. Back, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford (1996)

    Google Scholar 

  3. Bektas, T.: The Multiple Traveling Salesman Problem: an Overview of Formulations and Solution Procedures. Omega 34, 209–219 (2006)

    Article  Google Scholar 

  4. Bhide, S., John, N., Kabuka, M.R.: A Boolean Neural Network Approach for the Traveling Salesman Problem. IEEE Transactions on Computers 42(10), 1271 (1993)

    Article  Google Scholar 

  5. Carter, A.E., Ragsdale, C.T.: A New Approach to Solving the Multiple Traveling Salesperson Problem Using Genetic Algorithms. European Journal of Operational Research 175, 246–257 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cavill, R., Smith, S., Tyrrell, A.: Multi-Chromosomal Genetic Programming. In: Proceedings of the 2005 conference on Genetic and evolutionary computation, pp. 1753–1759. ACM, New York (2005)

    Chapter  Google Scholar 

  7. Finke, G., Claus, A., Gunn, E.: A Two-Commodity Network Flow Approach to the Traveling Salesman Problem. Congressus Numerantium 41, 167–178 (1984)

    MathSciNet  Google Scholar 

  8. Gen, M., Cheng, R.: Genetic Algorithms and Engineering Design. Wiley Interscience, Hoboken (1997)

    Google Scholar 

  9. Glover, F.: Artificial Intelligence, Heuristic Frameworks and Tabu Search. Managerial and Decision Economics 11(5) (1990)

    Google Scholar 

  10. Gutin, G., Punnen, A.P.: The Traveling Salesman Problem and Its Variations. In: Combinatorial Optimization, Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  11. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  12. Hsu, C.Y., Tsai, M.H., Chen, W.M.: A Study of Feature-mapped Approach to the Multiple Travelling Salesmen Problem. In: IEEE International Symposium on Circuits and Systems, vol. 3, pp. 1589–1592 (1991)

    Google Scholar 

  13. Király, A., Abonyi, J.: Optimization of Multiple Traveling Salesmen Problem by a Novel Representation-based Genetic Algorithm. In: 10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics, Budapest, Hungary, pp. 315–326 (2009)

    Google Scholar 

  14. Király, A., Abonyi, J.: Optimization of Multiple Traveling Salesmen Problem by a Novel Representation-based Genetic Algorithm. In: Koeppen, M., Schaefer, G., Abraham, A., Nolle, L. (eds.) Intelligent Computational Optimization in Engineering: Techniques & Applications, Advances in Intelligent and Soft Computing. Springer, Heidelberg (excepted to 2010)

    Google Scholar 

  15. Laporte, G., Nobert, Y.: A Cutting Planes Algorithm for the m-Salesmen Problem. Journal of the Operational Research Society 31, 1017–1023 (1980)

    MATH  MathSciNet  Google Scholar 

  16. Malmborg, C.J.: A Genetic Algorithm for Service Level-based Vehicle Scheduling. European Journal of Operational Research 93(1), 121–134 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Miliotis, P.: Using Cutting Planes to Solve the Symmetric Travelling Salesman Problem. Mathematical Programming 15(1), 177–188 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  18. Park, Y.B.: A Hybrid Genetic Algorithm for the Vehicle Scheduling Problem with Due Times and Time Deadlines. International Journal of Productions Economics 73(2), 175–188 (2001)

    Article  Google Scholar 

  19. Pierrot, H.J., Hinterding, R.: Using Multi-Chromosomes to Solve a Simple Mixed Integer Problem. In: Canadian AI 1997. LNCS, vol. 1342, pp. 137–146. Springer, Heidelberg (1997)

    Google Scholar 

  20. Potvin, J., Lapalme, G., Rousseau, J.: A Generalized k-opt Exchange Procedure for the mtsp. INFOR 21, 474–481 (1989)

    Google Scholar 

  21. Potvin, J.Y.: Genetic Algorithms for the Traveling Salesman Problem. Annals of Operations Research 63(3), 337–370 (1996)

    Article  Google Scholar 

  22. Ross, S.M.: Introduction to Probability Models. Macmillian, New York (1984)

    Google Scholar 

  23. Russell, R.A.: An Effective Heuristic for the m-tour Traveling Salesman Problem with some Side Conditions. Operations Research 25(3), 517–524 (1977)

    Article  MATH  Google Scholar 

  24. Tanga, L., Liu, J., Rongc, A., Yanga, Z.: A Multiple Traveling Salesman Problem Model for Hot Rolling Scheduling in Shangai Baoshan Iron & Steel Complex. European Journal of Operational Research 124, 267–282 (2000)

    Article  Google Scholar 

  25. Zhang, T., Gruver, W., Smith, M.: Team Scheduling by Genetic Search. In: Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials, vol. 2, pp. 839–844 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Király, A., Abonyi, J. (2010). A Novel Approach to Solve Multiple Traveling Salesmen Problem by Genetic Algorithm. In: Rudas, I.J., Fodor, J., Kacprzyk, J. (eds) Computational Intelligence in Engineering. Studies in Computational Intelligence, vol 313. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15220-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15220-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15219-1

  • Online ISBN: 978-3-642-15220-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics