Skip to main content

Inductive-Inductive Definitions

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 6247)

Abstract

We present a principle for introducing new types in type theory which generalises strictly positive indexed inductive data types. In this new principle a set A is defined inductively simultaneously with an A-indexed set B, which is also defined inductively. Compared to indexed inductive definitions, the novelty is that the index set A is generated inductively simultaneously with B. In other words, we mutually define two inductive sets, of which one depends on the other.

Instances of this principle have previously been used in order to formalise type theory inside type theory. However the consistency of the framework used (the theorem prover Agda) is not so clear, as it allows the definition of a universe containing a code for itself. We give an axiomatisation of the new principle in such a way that the resulting type theory is consistent, which we prove by constructing a set-theoretic model.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-15205-4_35
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-15205-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aczel, P.: On relating type theories and set theories. In: Altenkirch, T., Naraschewski, W., Reus, B. (eds.) TYPES 1998. LNCS, vol. 1657, pp. 1–18. Springer, Heidelberg (1999)

    CrossRef  Google Scholar 

  2. Backhouse, R., Chisholm, P., Malcolm, G., Saaman, E.: Do-it-yourself type theory. Formal Aspects of Computing 1(1), 19–84 (1989)

    CrossRef  Google Scholar 

  3. Benke, M., Dybjer, P., Jansson, P.: Universes for generic programs and proofs in dependent type theory. Nordic Journal of Computing 10, 265–269 (2003)

    MATH  MathSciNet  Google Scholar 

  4. Chapman, J.: Type theory should eat itself. Electronic Notes in Theoretical Computer Science 228, 21–36 (2009)

    CrossRef  Google Scholar 

  5. Danielsson, N.: A formalisation of a dependently typed language as an inductive-recursive family. In: Altenkirch, T., McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 93–109. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  6. Dybjer, P.: Inductive families. Formal aspects of computing 6(4), 440–465 (1994)

    MATH  CrossRef  Google Scholar 

  7. Dybjer, P.: Internal type theory. In: Berardi, S., Coppo, M. (eds.) TYPES 1995. LNCS, vol. 1158, pp. 120–134. Springer, Heidelberg (1996)

    Google Scholar 

  8. Dybjer, P.: A general formulation of simultaneous inductive-recursive definitions in type theory. Journal of Symbolic Logic 65(2), 525–549 (2000)

    MATH  CrossRef  MathSciNet  Google Scholar 

  9. Dybjer, P., Setzer, A.: A finite axiomatization of inductive-recursive definitions. In: Girard, J. (ed.) TLCA 1999. LNCS, vol. 1581, pp. 129–146. Springer, Heidelberg (1999)

    CrossRef  Google Scholar 

  10. Dybjer, P., Setzer, A.: Induction–recursion and initial algebras. Annals of Pure and Applied Logic 124(1-3), 1–47 (2003)

    MATH  CrossRef  MathSciNet  Google Scholar 

  11. Dybjer, P., Setzer, A.: Indexed induction–recursion. Journal of logic and algebraic programming 66(1), 1–49 (2006)

    MATH  CrossRef  MathSciNet  Google Scholar 

  12. Martin-Löf, P.: Intuitionistic type theory. Bibliopolis Naples (1984)

    Google Scholar 

  13. Morris, P.: Constructing Universes for Generic Programming. Ph.D. thesis, University of Nottingham (2007)

    Google Scholar 

  14. Nordvall Forsberg, F., Setzer, A.: Induction-induction: Agda development and extended version (2010), http://cs.swan.ac.uk/~csfnf/induction-induction/

  15. Palmgren, E.: On universes in type theory. In: Sambin, G., Smith, J. (eds.) Twenty five years of constructive type theory, pp. 191–204. Oxford University Press, Oxford (1998)

    Google Scholar 

  16. Streicher, T.: Investigations into intensional type theory. Habilitiation Thesis (1993)

    Google Scholar 

  17. The Agda Team: The Agda wiki (2010), http://wiki.portal.chalmers.se/agda/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nordvall Forsberg, F., Setzer, A. (2010). Inductive-Inductive Definitions. In: Dawar, A., Veith, H. (eds) Computer Science Logic. CSL 2010. Lecture Notes in Computer Science, vol 6247. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15205-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15205-4_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15204-7

  • Online ISBN: 978-3-642-15205-4

  • eBook Packages: Computer ScienceComputer Science (R0)