Skip to main content

Effects of Pesticides on the Growth of Ectomycorrhizal Fungi and Ectomycorrhiza Formation

  • Chapter
  • First Online:
Diversity and Biotechnology of Ectomycorrhizae

Part of the book series: Soil Biology ((SOILBIOL,volume 25))

Abstract

For decades it has been observed that forest plant growth is stimulated by the controlled mycorrhization of ectomycorrhizal fungi and its subsequent success in reforestation. Similarly, pesticides have been widely used in the production of forest plants. Early studies on the effect of pesticides on ectomycorrhizal fungi revealed a negative effect on mycelial growth and the ability of mycorrhizal plant. The present chapter includes the review of the recent papers on the effect of pesticides on ectomycorrhizal fungi. It has been observed that fungicides affected at low doses, both in vitro and in vivo. However, the diversity of ectomycorrhizal fungi and types of fungicide allows selection of the fungicide used depending on the fungus and situations that we desire to study. In general, herbicides and insecticides are less toxic to ectomycorrhizal fungi, and in nursery conditions and mainly in the field, their effects are low or absent. Finally, a study on mycelial growth of Lactarius deliciosus, a species of commercial interest was performed to evaluate the effects of some pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aleksandrowicz-Trzcinska M (2007) The effect of fungicides used in the protection of natural regenerations of pine against Lophodermium needle cast on mycorrhizae and seedling growth. Sylwan 151:27–34

    Google Scholar 

  • Altman J (1969) Predisposition of sugarbeets to Rhizoctonia damping-off with herbicides. Phytophathology 59:1015

    Google Scholar 

  • Barker SJ, Tagu D (2000) The role of auxins and cytokinines in mycorrhizal symbioses. J Plant Growth Regul 19:144–154

    PubMed  CAS  Google Scholar 

  • Bergström L, Stenström J (1998) Environmental fate of chemicals in soil. Ambio 27:16–23

    Google Scholar 

  • Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systematic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306

    PubMed  CAS  Google Scholar 

  • Burgoa B, Wauchope RD (1995) Pesticides in run-off and surface waters. In: Roberts TR, Kearney PC (eds) Environmental behaviour of agrochemicals. Wiley, Chichester, pp 131–184

    Google Scholar 

  • Busse MD, Fiddler GO, Ratcliff AW (2004) Ectomycorrhizal formation in herbicide-treated soils of differing clay and organic matter content. Water Air Soil Pollut 152:23–34

    CAS  Google Scholar 

  • Cade-Menun BJ, Berch SM (1997) Response of mycorrhizal western red cedar to organic phosphorus sources and benomyl. Can J Bot 75:1226–1235

    CAS  Google Scholar 

  • Capecchi M, Vecchiati P, Zambonelli A (1999) Dinamica della micorrizazione in due tartufaie sperimentali di Tuber magnatum Pico in provincia di Modena. Micol Ital 17:9–18

    Google Scholar 

  • Carrillo C (2000) Producción de inóculo de hongos ectomicorrícicos y micorrización controlada de Pinus halepensis Miller en vivero. (Production of ectomycorrhizal fungal inoculum and controlled mycorrhization of Pinus halepensis Miller in nursery). Ph.D. thesis, University of Murcia, Spain, 241 pp

    Google Scholar 

  • Castellano MA, Molina R (1989) Mycorrhizae. In: Landis TD, Tinus RW, McDonald SE, Barnett JP (eds) The container tree nursery manual, vol 5, Agricultural handbook 674. Department of Agriculture, Forest Service, Washington, DC, pp 101–167

    Google Scholar 

  • Chakravarty P, Chatarpaul L (1988) The effects of Velpar L. (hexazinone) on seedling growth and ectomycorrhizal symbiosis of Pinus resinosa. Can J For Res 18:917–921

    CAS  Google Scholar 

  • Chakravarty P, Chatarpaul L (1990a) Non-target effect of herbicides: I. Effect of glyphosate and hexazinone on soil microbial activity. Microbial population, and in vitro growth of ectomycorrhizal fungi. Pestic Sci 28:233–241

    CAS  Google Scholar 

  • Chakravarty P, Chatarpaul L (1990b) Non-target effect of herbicides: II. The influence of glyphosate on ectomycorrhizal symbiosis of red pine (Pinus resinosa) under greenhouse and field conditions. Pestic Sci 28:243–247

    CAS  Google Scholar 

  • Chakravarty P, Sidhu SS (1987) Effect of glyphosate, hexazinone and triclopyr on in vitro growth of five species of ectomycorrhizal fungi. Eur J For Pathol 17:204–210

    CAS  Google Scholar 

  • Chakravarty P, Peterson RL, Ellis BE (1990) Integrated control of Fusarium damping-off in red pine seedlings with the ectomycorrhizal fungus Paxillus involutus and fungicides. Can J For Res 20:1283–1288

    CAS  Google Scholar 

  • Chen SK, Edwards CA (2001) A microcosm approach to assess the effects of fungicides on soil ecological processed and plant growth: comparisons of two soil types. Soil Biol Biochem 33:1981–1991

    CAS  Google Scholar 

  • Chevalier G, Giraud M, Bardet MC (1982) Interactions entre les mycorhizes de Tuber melanosporum et celles d’autres champignons ectomycorhiziens en sols favorables à la truffe. In: INRA (ed) Les Mycorhizes: biologie et utilisation, vol 13. Les Colloques de l’INRA, Paris, pp 313–321

    Google Scholar 

  • Choi JS, Hee HJ, Hwang IT, Pyon JY, Cho KY (1999) Differential susceptibilities of wheat and barley to diphenyl ether herbicide oxyfluorfen. Pestic Biochem Phys 65:62–67

    CAS  Google Scholar 

  • Chrispeels MJ, Sadava DE (1994) Plants, genes and agriculture. Jones and Bartlett, Boston, p 478

    Google Scholar 

  • Colinas C, Ingham E, Molina R (1994a) Population responses of target and non-target forest soil organisms to selective biocides. Soil Biol Biochem 26:41–47

    CAS  Google Scholar 

  • Colinas C, Molina R, Trappe J, Perry D (1994b) Ectomycorrhizas and rhizosphere microorganisms of seedlings of Pseudotsuga menziesii (Mirb.) Franco planted on a degraded site and inoculated with forest soils pretreated with selective biocides. New Phytol 127:529–537

    CAS  Google Scholar 

  • DaSilva EJ, Henriksson LE, Urdis M (1977) Growth responses of mycorrhizal Boletus and Rhizopogon species to pesticides. Trans Br Mycol Soc 68:434–437

    Google Scholar 

  • Datnoff LE, Nemec S, Pernezny K (1995) Biological control of fusarium crown and root rot of tomato in Florida using Trichoderma harzianum and Glomus intraradices. Biol Control 5:427–431

    Google Scholar 

  • De la Bastide PY, Kendrick B (1990) The in vitro effects of benomyl on disease tolerance, ectomycorrhiza formation, and growth of white pine (Pinus strobus) seedlings. Can J Bot 68:444–448

    Google Scholar 

  • DeLorenzo ME, Taylor LA, Lund SA, Pennington PL, Strozier ED, Fulton MH (2002) Toxicity and bioconcentration potential of the agricultural pesticide endosulfan in phytoplankton zooplakton. Arch Environ Contam Toxicol 42:173–181

    PubMed  CAS  Google Scholar 

  • Desprez-Loustau M-L, Dupuis F, Viguié A (1992) Evaluation of single annual applications of sterol-inhibiting fungicides for control of pine twisting rust. Plant Dis 76:376–382

    CAS  Google Scholar 

  • Díaz G, Carrillo C, Honrubia M (2003) Differential responses of ectomycorrhizal fungi to pesticides in pure culture. Cryptogam Mycol 24:199–211

    Google Scholar 

  • Dickinson TA, Hutchison LJ (1997) Numerical taxonomic methods cultural characters, and the systematics of ectomycorrhizal agarics, boletes and gastermycetes. Mycol Res 101:477–492

    Google Scholar 

  • Donnelly PK, Fletcher JS (1995) PCB metabolism by ectomycorrhizal fungi. Bull Environ Contam Toxicol 54:507–513

    PubMed  CAS  Google Scholar 

  • Donnelly PK, Entry JA, Crawford DL (1993) Degradation of atrazine and 2, 4-dochlorophenoxyacetic acid by mycorrhizal fungi at three nitrogen concentrations in vitro. Appl Environ Microbiol 59:2642–2647

    PubMed  CAS  Google Scholar 

  • Dörfler U, Feicht EA, Scheunert I (1997) S-triazine residues in groundwater. Chemosphere 35:99–106

    PubMed  Google Scholar 

  • Dubus IG, Hollis JM, Brown CD (2000) Pesticides in rainfall in Europe. Environ Pollut 110:331–344

    PubMed  CAS  Google Scholar 

  • Elbetieha A, Da’as SI, Khamas W, Darmani H (2001) Evaluation of the toxic potencials of cypermethrin pesticide on some reproductive and fertility parameters in the male rats. Arch Environ Contam Toxicol 41:522–528

    PubMed  CAS  Google Scholar 

  • Estok D, Freedman B, Boyle D (1989) Effects of the herbicides 2, 4-D, glyphosate, hexazinone, and triclopyr on the growth of three species of ectomycorrhizal fungi. Bull Environ Contam Toxicol 42:835–839

    PubMed  CAS  Google Scholar 

  • Etayo ML, De Miguel AM (1998) Estudio de las ectomycorrizas en una trufera cultivada situada en Olóriz (Navarra). Publicaciones de Biologia de la Universidad de Navarra. Serie Botanica 11:55–114

    Google Scholar 

  • Flykt E, Timonen S, Pennanen T (2008) Variation of ectomycorrhizal colonisation in Norway spruce seedlings in Finnish forest nurseries. Silva Fenn 42:571–585

    Google Scholar 

  • Garbaye J (1994) Helper bacteria – a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Google Scholar 

  • Garbaye J (2000) The role of ectomycorrhizal symbiosis in the resistance of forests to water stress. Outlook Agric 29:63–69

    Google Scholar 

  • Garbaye J, Churin J-L, Duponnois R (1992) Effects of substrate sterilization, fungicide treatment and mycorrhization helper bacteria on ectomycorrhizal formation of pedunculate oak (Quercus robur) inoculated wtih Laccaria laccata in two peat bare-root nurseries. Biol Fertil Soils 13:55–57

    CAS  Google Scholar 

  • Gaus I (2000) Effects of water extraction in a vulnerable phreatic aquifer: consequences for groundwater contamination by pesticides, Sint-Jansteen area, The Netherlands. Hydrogeol J 8:218–229

    CAS  Google Scholar 

  • Gerecke AC, Schärer M, Singer HP, Müller SR, Schwarzenbach RP, Sägesser M, Ochsenbein U, Popow G (2002) Sources of pesticides in surface waters in Switzerland: pesticide load through waste water treatment plants – current situation and reduction potential. Chemosphere 48:307–315

    PubMed  CAS  Google Scholar 

  • Gonzalez-Moro MB, Iribeei N, Duñabeitia MK, Loureiro-Beldarrain I, González-Murua C (2000) Effect of phosphinothricin herbicide on nitrogen metabolism in Pinus radiata and Laccaria bicolor. Phyton (Special Issue Root-soil interactions) 40:71–77

    CAS  Google Scholar 

  • Govi G, Bencivenga M, Granetti B, Pacioni G, Palenzona M, Tocci A, Zambonelli A (1997) Metodo basato sulla caratterizzazione morfologica delle micorrize. In: Toscana R (ed) Il Tartufo. Florence, Centro Stampa Giunta Regionale, pp 49–62

    Google Scholar 

  • Gramatica P, Di Guarno A (2002) Screening of pesticides for environmental partitioning tendency. Chemosphere 47:947–956

    PubMed  CAS  Google Scholar 

  • Granetti B, Angelini P (1992) Competizione tra alcuni funghi ectomicorrizici e T. melanosporum in una tartufaia coltivata. Micol Vegetazione Mediterr 7:173–188

    Google Scholar 

  • Guerin-Laguette A, Plassard C, Mousain D (2000) Effects of experimental conditions on mycorrhizal relationships between Pinus sylvestris and Lactarius deliciosus and unprecedented fruit-body formation of the Saffron milk cap under controlled soilless conditions. Can J Microbiol 46:790–799

    PubMed  CAS  Google Scholar 

  • Hall IR, Wang Y (1998) Methods for cultivating edible ectomycorrhizal mushrooms. In: Varma A (ed) Mycorrhiza manual. Springer, Berlin, pp 99–114

    Google Scholar 

  • Hatch AB (1937) The physiological basis of mycotrophy in the genus Pinus. Black Rock For Bull 6:168

    Google Scholar 

  • Heiskanen J, Rikala R (2003) Effect of peat-based container media on establishment of Scots pine, Norway spruce and silver birch seedlings. Tree Planter’s Notes 50:28–33

    Google Scholar 

  • Hutchison LJ (1990) Studies on the systematics of ectomycorrhizal fungi in axenic culture. IV. The effect of some selected fungitoxic compounds upon linear growth. Can J Bot 68:2172–2178

    CAS  Google Scholar 

  • Ingham ER, Coleman DC (1984) Effects of streptomycin, cycloheximide, fungizone, captan, carbofuran, cygon, and PCNB on soil microorganisms. Microb Ecol 10:345–358

    CAS  Google Scholar 

  • Jalai-Hare SH, Kendrick WB (1987) Response of an endomycorrhizal fungus in Allium porrum L. to different concentrations of the systemic fungicides, metalaxyl (Ridomil®) and fosetyl-Al (Aliette®). Soil Biol Biochem 19:95–99

    Google Scholar 

  • Jones MD, Hutchinson TC (1986) The effect of mycorrhizal infection on the response of Betula papyerifera to nickel and copper. New Phytol 102:429–442

    CAS  Google Scholar 

  • Jones MD, Durall DM, Tinker PB (1991) Fluxes of carbon and phosphorus between symbionts in willow ectomycorrhizas and their changes with time. New Phytol 118:99–106

    Google Scholar 

  • Juntunen ML, Kitunen V (2003) Leaching of propiconazole and chlorothalonil during protection of Pinus sylvestris seedlings in containers. Scand J For Res 18:45–53

    Google Scholar 

  • Kelley WD, South DB (1980) Effects of herbicides on in vitro growth of mycorrhizae of Pine (Pinus spp.). Weed Sci 28:599–602

    CAS  Google Scholar 

  • Kreuger J (1998) Pesticides in stream water within an agricultural catchment in southern Sweden, 1990–1996. Sci Total Environ 216:227–251

    PubMed  CAS  Google Scholar 

  • Laatikainen T, Heinonen-Tanski H (2002) Mycorrhizal growth in pure cultures in the presence of pesticides. Microbiol Res 157:127–137

    PubMed  CAS  Google Scholar 

  • Laiho O (1965) Further studies on the ectendotrophic mycorrhizae. Acta For Fenn 79:1–34

    Google Scholar 

  • Landis TD (1989) Mineral nutrients and fertilization. In: Landis TD, Tinus RW, McDonald SE, Barnett JP (eds) The container tree nursery manual, vol 4. Department of Agriculture, Forest Service, Washington DC, pp 1–67

    Google Scholar 

  • Le Tacon F, Alvarez IF, Bouchard D, Henrion B, Jackson RM, Luff S, Parlade JI, Pera J, Stenström E, Villeneuve N, Walker C (1992) Variations in field response of forest trees to nursery ectomycorrhizal inoculation in Europe. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. CAB International, Wallingford, pp 119–132

    Google Scholar 

  • Le Tacon F, Mousan D, Garbaye J, Bouchard D, Churin J-L, Argillier C, Amirault J-M, Généré R (1997) Mycorrhizes, pépinières et plantations forestières en France (Summary in English). Revue Forestière Française 49:131–154

    Google Scholar 

  • Lekounougou S, Jacquot JP, Gérardin P, Gelhaye E (2008) Effects of propiconazole on extra-cellular enzymes involved in nutrient mobilization during Trametes versicolor wood colonization. Wood Sci Technol 42:169–177

    CAS  Google Scholar 

  • Levanon D, Meisinger JJ, Codling EE, Starr JL (1994) Impact of tillage activity and the fate of pesticides in the upper soil. Water Air Soil Pollut 72:179–189

    CAS  Google Scholar 

  • Manninen AM, Laatikainen T, Holopainen T (1998) Condition of Scots pine fine roots and mycorrhiza after fungicide application and low-level ozone exposure in a 2-year field experiment. Trees 12:347–355

    Google Scholar 

  • Marin M (2009) Ectomycorrhizal fungi and its application in forest nursery. In: Rai M (ed) Advances in fungal biotechnology. IK International, New Delhi, pp 379–408

    Google Scholar 

  • Marx DH, Rowan SJ (1981) Fungicides influence growth and development of specific ectomycorrhizae on Loblolly pine seedlings. Forest Sci 27:167–176

    Google Scholar 

  • Marx DH, Cordell CH, France RC (1986) Effects of triadmefon on grown and ectomycorrhizal development on loblolly and slash pines in nurseries. Phytopathology 76:824–831

    CAS  Google Scholar 

  • Massicote HB, Takaberry LE, Ingham ER, Thies WG (1998) Ectomycorrhizae establishment on Douglas-fir seedlings following chloropicrin treatment to control laminated-root rot disease: assessment of 4 and 5 years after outplanting. Appl Soil Ecol 10:117–126

    Google Scholar 

  • McLaughlin A, Mineau P (1995) The impact of agricultural practices on biodiversity. Agric Ecosyst Environ 55:201–212

    Google Scholar 

  • Meharg AA, Cairney JWG (2000) Ectomycorrhizas - extending the capabilities of rhizosphere remediation? Rev Soil Biol Biochem 32:1475–1484

    CAS  Google Scholar 

  • Meharg AA, Cairney JWG, Maguire N (1997a) Mineralization of 2, 4-dichlorophenol by ectomycorrhizal fungi in axenic culture and in symbiosis with pine. Chemosphere 34:2495–2504

    CAS  Google Scholar 

  • Meharg AA, Denis GR, Cairney JWG (1997b) Biotransformation of 2, 4, 6-trinitrotoluene (TNT) by ectomycorrhizal basidiomycetes. Chemosphere 35:513–521

    CAS  Google Scholar 

  • Metcalf RL (1971) The chemistry and biology of pesticides. In: White-Stevens R (ed) Pesticides in the environment, Part 1, vol 1. Marcel Dekker, New York, pp 1–144

    Google Scholar 

  • Montanini B, Marco Betti M, Márquez AJ, Balestrini R, Bonfante P, Ottonello S (2003) Distinctive properties and expression profiles of glutamine synthetase from a plant symbiotic fungus. Biochem J 373:357–368

    PubMed  CAS  Google Scholar 

  • Nerg A-M, Kasurinen A, Holopainen T, Julkunen-Tiitto R, Neuvonen S, Holopainen JK (2008) The significance of ectomycorrhizas in chemical quality of silver birch foliage and above-ground insect herbivore performance. J Chem Ecol 34:1322–1330

    PubMed  CAS  Google Scholar 

  • Niini SS, Raudaskoski M (1993) Response of ectomycorrhizal fungi to benomyl and nocodazole: growth inhibition and microtubule depolymeration. Mycorrhiza 3:83–91

    CAS  Google Scholar 

  • O’Neill JJM, Mitchell DT (2000) Effects of benomyl and captan on growth and mycorrhizal colonization of Sitka-spruce (Picea sitchensis) and ash (Fraxinus excelsior) in Irish nursery soil. For Pathol 30:165–174

    Google Scholar 

  • Page-Dumroese DS, Harvey AE, Jurgensen MF, Larsen MJ (1996) Ponderosa pine seedling response to planting-site soil fumigation and fungicide application. Northwest Sci 70:139–146

    CAS  Google Scholar 

  • Pawuk WH, Ruehle IE, Marx DH (1980) Fungicide drenches affect ectomycorrhizal development of container-grown Pinus palustris seedlings. Can J For Res 10:61–64

    Google Scholar 

  • Pedersen CT, Sylvia DM (1997) Limitations to use benomyl in evaluating mycorrhizal functioning. Biol Fertil Soils 25:163–168

    CAS  Google Scholar 

  • Peltola A (2001) Finnish statistical yearbook of forestry 2000. Jyväskylä, Agriculture, Forestry and Fishery, vol 52. p 374 (in Finnish with English summary)

    Google Scholar 

  • Perry DA, Molina R, Amaranthus MP (1987) Mycorrhizae, mycorrhizospheres, and reforestation: current knowledge and research needs. Can J For Res 17:929–940

    Google Scholar 

  • Pimentel D, Tort M, D’Anna L, Krawic A, Berger J, Rossman J, Mugo F, Doon N, Shriberg M, Howard E, Lee S, Talbot J (1998) Ecology of increasing disease. Bioscience 48:817–826

    Google Scholar 

  • Reddy MS, Natarajan K (1994) Effect of a synthetic pyrethroid on the growth of ectomycorrhizal fungi and mycorrhiza formation in Pinus patula. Mycorrhiza 5:115–117

    CAS  Google Scholar 

  • Reddy MS, Natarajan K (1995) Effects of the fungicide dithane M-45 on the growth and mycorrhizal formation of Pinus patula seedlings. Soil Biol Biochem 27:1503–1504

    CAS  Google Scholar 

  • Reitveld WJ (1989) Transplanting stress in bareroot conifer seedlings: its development and progression to establishment. North J Appl For 6:99–107

    Google Scholar 

  • Rostad CE (1997) Concentration and transport of chlordaner and nonachlor associated with suspended sediments in the Missisippi river, May 1988 to June 1990. Arch Environ Contam Toxicol 33:369–377

    PubMed  CAS  Google Scholar 

  • Russell MH (1995) Recommend approaches to assess pesticide mobility in soil. In: Roberts TR, Kearney PC (eds) Environmental behaviour of agrochemicals. Wiley, Chichester, pp 57–129

    Google Scholar 

  • Sánchez F, Honrubia M, Torres P, Díaz G, García G, Pérez P (1994) Biodiversity and ecological distribution of ectomycorrhizal fungi in mediterranean forests of the Sistema Ibérico Mountains. In: Azcon-Aguilar C, Barea JM (eds) Mycorrhizas in integrated systems from genes to plant development. Proceedings of the fourth European symposium on mycorrhizas, Granada, Spain

    Google Scholar 

  • Schüepp H, Bodmer M (1991) Complex response of VA-mycorrhizae to xenobiotic substances. Toxicol Environ Chem 30:193–199

    Google Scholar 

  • Schweiger PF, Jakobsen I (1998) Dose–response relationships between four pesticides and phosphorus uptake by hyphae of arbuscular mycorrhizas. Soil Biol Biochem 30:1425–1432

    Google Scholar 

  • Sidhu SS, Chakravarty P (1990) Effect of select forestry herbicides on ectomycorrhizal development and seedling growth of lodgepole pine and white spruce under controlled and field enviroment. Eur J For Pathol 20:77–94

    Google Scholar 

  • Singer R (1986) The Agaricales in modern taxonomy, 4th edn. Koeltz Scientific Books, Koenigstein, Germany, pp 829–839

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, London

    Google Scholar 

  • Smith MD, Hartnett DC, Rice CW (2000) Effects of long-term fungicide application on microbial properties in tallgrass prairie soil. Soil Biol Biochem 32:935–946

    CAS  Google Scholar 

  • Tarkka M, Nehls V, Hampp R (2005) Physiology of ectomycorrhiza (ECM). Prog Bot 66:247–276

    CAS  Google Scholar 

  • Teste FP, Schmidt MG, Berch SM, Bulmer C, Egger KN (2004) Effects of ectomycorrhizal inoculants on survival and growth of interior Douglas-fir seedlings on reforestation sites and partially rehabilitated landings. Can J For Res 34:2074–2088

    Google Scholar 

  • Teste FP, Karst J, Jones MD, Simard SW, Durall DM (2006) Methods to control ectomycorrhizal colonization: effectiveness of chemical and physical barriers. Mycorrhiza 17:51–65

    PubMed  Google Scholar 

  • Theodorou C, Skinner MF (1976) Effects of fungicides on seed inocula of basidiospores of mycorrhizal fungi. Aust For Res 7:53–58

    Google Scholar 

  • Torstensson L, Wessén B (1984) Interactions between the fungicide benomyl and soil microrganisms. Soil Biol Biochem 16:445–452

    CAS  Google Scholar 

  • Trappe JM, Molina R, Castellano M (1984) Reactions of mycorrhizal fungi and mycorrhiza formation to pesticides. Ann Rev Phytopathol 22:331–359

    CAS  Google Scholar 

  • Tu CM (1978) Effect of some pesticides on acetylene reduction and microorganisms in sandy loam. Soil Biol Biochem 10:451–456

    CAS  Google Scholar 

  • Tu CM (1991) Effect of some technical and formulated insecticides on microbial activities in soil. J Environ Sci Health B 26:557–573

    Google Scholar 

  • Tu CM (1993) Effect of fungicides, captafol and chlorothalonil, on microbial and enzymatic activities in mineral soil. J Environ Sci Health B 28:67–80

    PubMed  CAS  Google Scholar 

  • Unestam T, Chakravarty P, Damm E (1989) Fungicides: in vitro tests not useful for evaluating effects on ectomycorrhizae. Agric Ecosyst Environ 28:535–538

    Google Scholar 

  • Van der Heijden MGA, Sanders IR (2002) Mycorrhizal ecology. Ecological studies 157. Springer, Berlin, p 469

    Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Google Scholar 

  • Wilde SA (1958) Forest soils-their properties and relation to silviculture. Ronald, New York, p 537

    Google Scholar 

  • Zambonelli A, Govi G (1991) Competizione fra Tuber albidum ed altri funghi. 3° contributo. Micol Ital 10:5–12

    Google Scholar 

  • Zambonelli A, Iotti M (2001) Effects on fungicide on Tuber borchii and Hebeloma sinapizans ectomycorrhizas. Mycol Res 105:611–614

    Google Scholar 

  • Zambonelli A, Iotti M, Rossi I, Hall I (2000) Interaction between Tuber borchii and other ectomycorrhizal fungi in a field plantation. Mycol Res 104:698–702

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Marin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Marin, M. (2011). Effects of Pesticides on the Growth of Ectomycorrhizal Fungi and Ectomycorrhiza Formation. In: Rai, M., Varma, A. (eds) Diversity and Biotechnology of Ectomycorrhizae. Soil Biology, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15196-5_14

Download citation

Publish with us

Policies and ethics